
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra

Departamento de Informática e Matemática Aplicada
Programa de Pós-Graduação em Sistemas e Computação

Mestrado Acadêmico em Sistemas e Computação

Hilbert-style formalism for two-dimensional
notions of consequence

Vitor Rodrigues Greati

Natal/RN

February 2022

Vitor Rodrigues Greati

Hilbert-style formalism for two-dimensional notions

of consequence

Master’s thesis presented to the Programa
de Pós-Graduação em Sistemas e Com-
putação of the Departamento de Informática
e Matemática Aplicada da Universidade Fed-
eral do Rio Grande do Norte as a partial
requirement for obtaining the Master’s de-
gree in Systems and Computing.

Research area:
Computing Fundamentals

Supervisor

João Marcos

Co-supervisor
Sérgio Marcelino

PPgSC – Programa de Pós-Graduação em Sistemas e Computação

DIMAp – Departamento de Informática e Matemática Aplicada

CCET – Centro de Ciências Exatas e da Terra

UFRN – Universidade Federal do Rio Grande do Norte

Natal/RN
February 2022

ii

Master’s thesis under the title Hilbert-style formalism for two-dimensional notions
of consequence presented by Vitor Rodrigues Greati and accepted by the Programa de Pós-
Graduação em Sistemas e Computação do Departamento de Informática e Matemática
Aplicada da Universidade Federal do Rio Grande do Norte, being approved by all members
of the examination board specified below:

Prof. Dr. João Marcos
Orientador

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Dr. Sérgio Marcelino
Coorientador

Instituto de Telecomunicações
Lisboa, Portugal

Prof. Dr. Carlos Caleiro
Departamento de Matemática

Instituto Superior Técnico, Lisboa, Portugal

Prof. Dr. Revantha Ramanayake
Faculty of Science and Engineering

University of Groningen

Prof. Dr. Umberto Rivieccio
Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte

Dr. Yoni Zohar
Department of Computer Science

Bar Ilan University

Natal/RN, 21 February, 2022

iii

Dedication

I dedicate this thesis to my parents, Adalcina and Jezuzeni, to my brother Davi, to my

friends Douglas, Geovanna, Paulla and Roberto, and to my advisors, João Marcos and

Sérgio Marcelino. Despite the difficulties due to the coronavirus pandemic, I never felt

alone or discouraged during the development of this research, thanks to the company,

guidance and support of these amazing people.

iv

Acknowledgements

First of all, I would like to express my deepest gratitude to João Marcos, my

advisor, for introducing me to the fascinating research direction on two-dimensional

notions of consequence, for the ready and precise technical guidance during these years,

and for presenting me opportunities and incentives to international collaborations and

international carrer. I am also very thankful to Sérgio Marcelino, my co-advisor, who

was always available to help me on technical matters, and to share with me his research

experiences and opportunities for joint work. Thanks should also go to Umberto Rivieccio,

for all the support on mathematical and writing-related issues, and for providing me

with more opportunities of international collaboration and interaction. Additionally, I

acknowledge the financial support from the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior — Brasil (CAPES) — Finance Code 001.

Many thanks also go to Pedro Filipe, a PhD student from the same research

group as Sérgio Marcelino in Portugal, with whom I had rich discussions about the

implementation of the program described in Appendix A; to Giuseppe Grecco, from

the Vrije Universiteit Amsterdam, for the valuable discussions on comparisons between

symmetrical Hilbert-style systems and Gentzen systems; and to Joel Felipe, from the

same post-graduate program as me, with whom I had the pleasure to work on a paper

about perfect paradefinite algebras. I also thank to professor Tore Langholm, which

kindly provided me access to one of his works currently unavailable on usual sources. In

addition, I acknowledge professors Carlos Caleiro, Yoni Zohar, Revantha Ramanayake

v

and Umberto Rivieccio for accepting joining the examination board and helping me to

improve this document.

Of course, I have to extend my sincere thanks to my family, for all the love and

support, and to all my friends, for the incentives, helpful advices and company during this

period. In special, to Paulo Douglas, Geovanna Freire, Paulla Sousa, professor Roberto

Lima, Clodomir, Pedro de Sá, Gabriel Medeiros, Álex Felipe, Gustavo “Owl” Alves,

Vinícius Campos, Aguinaldo Bezerra, and, last but not least, my dear cat, Zangado.

vi

Hilbert-style formalism for two-dimensional notions
of consequence

Author: Vitor Rodrigues Greati

Advisor: João Marcos

Co-advisor: Sérgio Marcelino

Abstract
The present work proposes a two-dimensional Hilbert-style deductive for-

malism (H-formalism) for B-consequence relations, a class of two-dimensional

logics that generalize the usual (Tarskian, one-dimensional) notions of logic.

We argue that the two-dimensional environment is appropriate to the study

of bilateralism in logic, by allowing the primitive judgments of assertion

and denial (or, as we prefer, the cognitive attitudes of acceptance and re-

jection) to act on independent but interacting dimensions in determining

what-follows-from-what. In this perspective, our proposed formalism consti-

tutes an inferential apparatus for reasoning over bilateralist judgments. After

a thorough description of the inner workings of the proposed proof formalism,

which is inspired by the one-dimensional symmetrical Hilbert-style systems,

we provide a proof-search algorithm for finite analytic systems that runs in

at most exponential time, in general, and in polynomial time when only rules

having at most one formula in the succedent are present in the concerned

system. We delve then into the area of two-dimensional non-deterministic

semantics via matrix structures containing two sets of distinguished truth-

values, one qualifying some truth-values as accepted and the other as rejected,

constituting a semantical path for bilateralism in the two-dimensional envi-

ronment. We present an algorithm for producing analytic two-dimensional

Hilbert-style systems for sufficiently expressive two-dimensional matrices, as

well as some streamlining procedures that allow to considerably reduce the

size and complexity of the resulting calculi. For finite matrices, we should

point out that the procedure results in finite systems. In the end, as a case

study, we investigate the logic of formal inconsistency called mCi with re-

spect to its axiomatizability in terms of Hilbert-style systems. We prove that

viii

there is no finite one-dimensional Hilbert-style axiomatization for this logic,

but that it inhabits a two-dimensional consequence relation that is finitely

axiomatizable by a finite two-dimensional Hilbert-style system. The existence

of such system follows directly from the proposed axiomatization procedure,

in view of the sufficiently expressive 5-valued non-deterministic bidimensional

semantics available for the mentioned two-dimensional consequence relation.

Keywords: two-dimensional consequence relations, Hilbert-style proof systems,

non-deterministic semantics, mCi

ix

Formalismo ao estilo de Hilbert para noções de
consequência bidimensionais

Autor: Vitor Rodrigues Greati

Orientador: João Marcos

Coorientador: Sérgio Marcelino

Resumo
O presente trabalho propõe um formalismo dedutivo bidimensional à Hilbert

(H-formalismo) para relações de B-consequência, uma classe de lógicas bidi-

mensionais que generalizam as noções usuais (Tarskianas, unidimensionais) de

lógica. Nós argumentamos que o ambiente bidimensional é apropriado para o

estudo do bilateralismo em lógica, por permitir que julgamentos primitivos de

asserção e denegação (ou, como preferimos, as atitudes cognitivas de aceitação

e rejeição) ajam em dimensões independentes e capazes de interagir entre

si ao determinar as inferências válidas de uma lógica. Nessa perspectiva, o

formalismo proposto constitui um aparato inferencial para raciocinar sobre

julgamentos bilateralistas. Após uma descrição detalhada do funcionamento

do formalismo proposto, o qual é inspirado nos sistemas de Hilbert simétri-

cos, nós provemos um algoritmo de busca de demonstrações que executa em

tempo exponencial, em geral, e em tempo polinomial quando apenas regras

contendo no máximo uma fórmula no sucedente estão presentes no sistema

em questão. Então, nós passamos a investigar semânticas não-determinísticas

bidimensionais por meio de estruturas de matrizes contendo dois conjuntos de

valores distinguidos, um qualificando alguns valores de verdade como aceitos, e

o outro, alguns valores como rejeitados, constituindo um caminho semântico

para o bilateralismo no ambiente bidimensional. Nós apresentamos também um

algoritmo para a produção de sistemas de Hilbert bidimensionais para matrizes

não-determinísticas bidimensionais suficientemente expressivas, bem como al-

guns procedimentos de simplificação que permitem reduzir consideravelmente

o tamanho e a complexidade do sistema resultante. Para matrizes finitas, vale

apontar, o procedimento resulta em sistemas finitos. Ao final, como estudo

de caso, investigamos a lógica da inconsistência formal chamada mCi quanto

xi

à sua axiomatizabilidade por sistemas ao estilo de Hilbert. Demonstramos

que não há sistemas de Hilbert finitos unidimensionais que capturem essa

lógica, mas que ela habita uma relação de consequência bidimensional finita-

mente axiomatizável por um sistema de Hilbert bidimensional. A existência

desse sistema segue diretamente do algoritmo de axiomatização proposto, em

vista da semântica bidimensional 5-valorada não-determinística suficientemente

expressiva que determina a relação de consequência bidimensional mencionada.

Palavras-chave: relações de consequência bidimensionais, sistemas de demons-

tração ao estilo de Hilbert, semânticas não-determinísticas, mCi.

xii

Contents

1. Introduction 1

2. Theoretical background 8

2.1. Algebras and languages . 8

2.2. A broad account of logic . 13

2.3. One-dimensional logics . 15

2.3.1. Consequence relations . 15

2.3.2. Logical matrices and entailment relations 16

2.3.3. Suszko’s thesis . 18

2.3.4. q-consequences and p-consequences 19

2.4. Two-dimensional logics . 24

2.4.1. B-consequence relations . 26

2.4.2. B-matrices and B-entailment . 30

2.5. Deductive formalisms . 33

2.5.1. G-formalisms . 34

2.5.2. H-formalisms . 38

2.5.3. Signed formalisms . 40

3. Symmetrical H-systems 42

3.1. Derivations as rooted labelled trees . 42

3.2. Symmetrical H-systems for one-dimensional consequence relations 56

xiii

4. Two-dimensional Hilbert-style formalism 63

4.1. Rules of inference and derivations . 63

4.2. Analyticity . 71

4.3. A proof-search and countermodel-search algorithm 72

5. Analytic H-systems for non-deterministic B-matrices 79

5.1. Sufficient expressiveness . 79

5.2. Axiomatizing non-deterministic B-matrices 81

5.3. Simplifying the axiomatization . 92

5.4. Extracting a countermodel from a failed proof attempt 102

6. Finite and analytic two-dimensional systems for non-finitely axiom-

atizable logics 105

6.1. The logic mCi is not finitely axiomatizable in one dimension 107

6.2. Combining two logical matrices into a nd-B-matrix 117

6.3. A finite and analytic two-dimensional system for mCi 119

7. Final remarks 122

Bibliography 125

A. Implementation of the axiomatization and proof-search algorithms 133

xiv

1. Introduction

A logical system is commonly understood, nowadays, to presuppose a formal

language equipped with a notion of consequence that connects expressions of the said

language and satisfies certain closure properties. The formal languages used in doing logic

are typically generated in a purely syntactical fashion and induce a collection of formulas

with an algebraic structure. The associated notion of consequence may be obtained in

a number of ways, in particular, proof-theoretically, through different kinds of proof

formalisms, or semantically, through the use of a satisfaction relation defined with the

help of some class of mathematical objects. In all cases, the very structure of the formulas

is usually productively explored when a given specific consequence relation involving

them is defined. At their simplest, consequence relations end up consisting in collections

of the so-called consecutions, that is, statements involving formulas or certain collections

thereof.

In the realm of Proof Theory, each choice of proof formalism gives rise to a

different class of deductive systems. In what follows, we shall call sequents the syntactical

objects manipulated by a given deductive system, and we will let G-systems stand for

“Gentzen-style systems” and H-systems stand for “Hilbert-style systems”, two popular

proof formalisms. The sequents manipulated by H-systems, on the one hand, are precisely

the components of consecutions, namely their antecedents or their succedents. The

sequents manipulated by G-systems, on the other hand, have both an antecedent and a

succedent, and the rules of those systems also involve contexts, or side formulas. While

1

such contexts allow for hypothetical judgments to be formulated, their absence, in H-

systems, has the interesting effect of forcing the deductive system to provide evidence

for judgments that have the exact form of the consecutions under scrutiny, free of

metalinguistic machinery. A further bonus feature worth mentioning is that H-systems

allow for a clean and straightforward notion of combination of logics: the merging of two

H-systems induces the smallest consequence relation in the joint language containing the

consequence relations induced by each one of them in separate.

Despite all that, traditional H-systems — those whose rules of inference have sets

of formulas as antecedents and single formulas as succedents — are considered hard to

work with due to the lack of control over of the search space when producing derivations,

which is usually guaranteed in other formalisms (G-systems, for example) via analyticity

results. Recently, C. Caleiro and S. Marcelino [43, 17] showed that, by adopting the

Hilbert-style formalism introduced by D. Shoesmith and T. Smiley [57], which slightly

generalizes the traditional H-systems to allow for sets of formulas also in the succedents

of rules, one can produce analytic H-systems for a very representative class of logics

determined by a class of non-deterministic semantical structures. Since then, Hilbert-style

systems are no longer only interesting from a theoretical point of view, but also from

the practical perspectives of automatic system generation, proof search and automated

reasoning.

When defining a notion of consequence, one has usually in mind a certain kind

of judgment that somehow governs what-follows-from-what in the reasoning underlying

the corresponding logical system. In contemporary logic there has been a persistent bias

towards a specific kind of judgment identified with the speech act of assertion. Indeed,

unilateralist consequence relations have focused exclusively on assertion, and have insisted

in reducing its polar opposite, denial, to the assertion of a negation.

In contrast, one may adopt bilateralism, an approach to logic in which denial is

2

treated as a primitive judgment, on a par with assertion. The first ideas on bilateralism

date back to the seventies, when K. Bendall [10] discussed the philosophical advantages

for the study of the meaning of negation in not employing a negation connective to

represent the acts of negative judgment, disbelief and denial. In 1983, H. Price [51]

defended the view of taking denial conditions together with assertion conditions into

consideration in determining the sense of propositions. Some years later, the same author

took those ideas to philosophical investigations about negation [52]. In [59], T. Smiley

introduced rules of rejection and presented bilateralist axiomatizations as a path to

categoricity, that is, the exclusion of unintended models by means of rules of inference.

In 2000, I. Rumfitt [54] and L. Humberstone [37] presented signed natural deduction

systems for intuitionistic and classical logics and discussed the applicability of bilateralism

in the study of the meaning of logical constants via deductive systems, as well as in

the differentiation between intuitionistic and classical reasonings. Since then, despite

the criticisms and debates regarding these ideas [30, 56, 25, 55, 31], bilateralism has

been present in many lines of research. Just to name a few, it appears in works on

philosophical proof theory of classical and intuitionistic logics [40, 39], in proof-theoretical

investigations of bi-intuitionistic logic [22] and in bilateral generalizations of Tarskian

consequence relations [23, 13].

One may be tempted to implement bilateralism by just employing Gentzen-style

systems that manipulate symmetrical sequents, that is, sequents consisting of a set of

formulas in the antecedent and also a set of formulas in the succedent — as opposed

to asymmetrical sequents, which only allow for a single formula in the succedent. This

symmetry allows not only to stipulate that some formula must be denied when a given

set of formulas is asserted, but also that some formula must be asserted when a given

set of formulas is denied. What may bring some embarrassment to this approach is the

fact that denial is still taken at large to be equivalent to non-assertion (and assertion is

3

taken to be equivalent to non-denial). Moreover, in the endgame, the associated notion

of consequence remains unaffected, governed by a single judgment; in other words, still a

unilateralist consequence.

One way of letting these two kinds of judgments coexist without necessarily

allowing them to interfere with one another consists in attaching to the underlying

formulas a force indicator or signal, say + for assertion and − for denial [54, 23]. For

example, the consecution −(𝜙→ 𝜓) ⊢ +𝜙 describes a rule in the bilateral axiomatization

of classical logic given in [54], representing the impossibility of, at once, denying 𝜙→ 𝜓

while failing to assert 𝜙. In [13], a concurrent approach of working with a two-dimensional

notion of consequence is offered, allowing for the cognitive attitudes of acceptance and

rejection to act over two separate logical dimensions and taking their interaction into

consideration in determining the meaning of logical connectives and of the statements

involving them. The aforementioned inference, for instance, would be expressed by the

two-dimensional judgment ∅
∅ |

𝜙
𝜙→𝜓

, which is intended to enforce that an agent is not

expected to find reasons for rejecting 𝜙→ 𝜓 while failing to find reasons for accepting

𝜙. More generally, where ΦY,Φ Y,ΦN and Φ Nare sets of formulas, a judgment Φ N
ΦY
|Φ Y

ΦN
is

intended to enforce that an agent is not expected to find reasons for simultaneously

accepting the formulas in ΦY, non-accepting the formulas in Φ Y, rejecting the formulas

in ΦN and non-rejecting the formulas in Φ N. If, in particular, ΦY is empty, the judgment

imposes no commitment with respect to the acceptance of any formula. This holds

similarly for the sets Φ Y, ΦN and Φ N.

From a semantical standpoint, two-dimensional consequences may be actualized

by the canonical notion of entailment induced by a so-called nd-B-matrix [13], a partial

non-deterministic logical matrix in which the latter judgments, or cognitive attitudes,

are represented by separate collections of truth-values. Non-deterministic logical matrices

have been extensively investigated in recent years, and proved useful in the construction

4

of effective semantics for many families of logics in a systematic and modular way [6, 45,

19, 18]. These structures interpret the logical constants as mappings allowed to output

nonempty sets of values — in contrast to the notion of (deterministic) logical matrices

that traditionally appears in the study of many-valued logics, in which the mappings may

only output a single value. In this work, as in [7], we consider more general structures

called partial non-deterministic logical matrices, in which the empty set is also allowed

as output of the interpretations.

From the proof-theoretical perspective, C. Blasio [11] introduced G-systems

that manipulate two-dimensional sequents. A Hilbert-style proof formalism for this two-

dimensional notion of logic, however, is currently missing. One of the goals of the present

thesis is to fill this gap. Our approach consists in a generalization of the Hilbert-style

formalism of D. Shoesmith and T. Smiley [57] by allowing the rules of inference to deal

with pairs of sets of formulas, and letting derivations be trees whose nodes come labelled

with such pairs and result from expansions determined by the rules. The first component

of these pairs is intended to represent the accepted formulas, while the second component

represents the rejected formulas.

More than just introducing two-dimensional H-systems, we will also generalize

the works of C. Caleiro and S. Marcelino [43, 17] with respect to the extraction of analytic

axiomatizations from logical matrices satisfying a property of sufficient expressiveness.

When a matrix is sufficient expressive, each truth-value is characterized by a collection

of formulas over a single propositional variable. Our extension of such property to nd-B-

matrices will show that adding a new dimension (represented by a new set of distinguished

values) to the matrix structure potentially increases the expressiveness of the linguistic

resources of the associated logic, in the sense that with the same language we may

characterize more values than we could with a single dimension. Besides being a useful

result on axiomatizability, our generalization also facilitates the study of bilateralism

5

from the perspective of Hilbert-style systems and many-valued logics.

As already mentioned, the analyticity of Hilbert-style systems is extremely

important for their usability. In fact, this property allows for bounded proof search and

countermodel search, and for the design of a simple recursive decision algorithm [43] that

runs in exponential time in general, and in polynomial time when the rules of inference

have at most one formula in the succedent. Both algorithms — the system generation and

the proof search — are studied and implemented using the C++ programming language

in the present work, for both the one-dimensional and the two-dimensional cases.

Finally, we will show how to take advantage of the additional expressiveness power

of two-dimensional matrices in order to produce a finite and analytic two-dimensional

Hilbert-style axiomatization for the one-dimensional logic of formal inconsistency called

mCi, introduced and studied by J. Marcos in [47]. Our result contrasts with the fact —

which we also prove here — that this logic is not finitely axiomatizable by one-dimensional

Hilbert-style systems. What we provide is, actually, a novel way of combining two logical

matrices into a single nd-B-matrix that is potentially more expressive than the ingredients

of the combination.

The present document is organized as follows: Chapter 2 introduces the basic

concepts and terminology involved in one-dimensional and two-dimensional notions of

consequence and deductive formalisms. Chapter 3 provides a general treatment of sym-

metrical Hilbert-style systems and illustrates it with the one-dimensional symmetrical

Hilbert-style formalism. Chapter 4 describes our proposed two-dimensional proof formal-

ism and a proof-search and countermodel-search algorithm for analytic two-dimensional

systems, proving its correctness and investigating its worst-case exponential asymptotic

complexity. Chapter 5 presents the general axiomatization procedure for finite sufficiently

expressive matrices, illustrating it and highlighting its modularity via the correspondence

between refining a matrix and adding rules to a sound symmetrical two-dimensional

6

H-system. Chapter 6 shows that the logic mCi is not finitely axiomatizable by a one-

dimensional H-system and presents a two-dimensional system for it as a product of the

algorithm described in the previous chapter. In the final remarks, we reflect upon the ob-

tained results and indicate some directions for future developments. Finally, Appendix A

provides instructions on how to execute the C++ implementation of the axiomatization

and proof-search algorithms.

7

2. Theoretical background

2.1. Algebras and languages

Given a mapping f : X → Y , we denote its domain X by dom(f), its codomain

Y by codom(f) and its range {f (x) | x ∈ X} ⊆ Y by ran(f). In case Y ⊆ Z , we let

f ↑Z : X → Z be the mapping such that f ↑Z (x) = f (x) for all x ∈ Y . The restriction

of f to W ⊆ X is the function g : W → Y such that g(x) := f (x) for every x ∈ W .

The power set of a set X is denoted by Pow(X). We write the natural extension of f to

the domain Pow(X) using the same symbol f , but, given Z ⊆ X , we write f [Z] for the

image of Z — the set {f (x) | x ∈ Z} — under f . A multifunction on Y is a mapping

f : X → Pow(Y), seen as providing output alternatives (instead of a single element) for

each element in dom(f). The cardinality of a set X is denoted by |X |. The set of natural

numbers is denoted by 𝜔.

A propositional signature is a family Σ := {Σk}k∈𝜔, where each Σk is a collection

of k-ary connectives. In case Σk is finite for every k ∈ 𝜔, we say that Σ is finite. A

non-deterministic algebra over Σ, or simply Σ-nd-algebra, is a structure A := ⟨A, ·A⟩,

such that A is a non-empty collection of elements called the carrier of A, and, for

each k ∈ 𝜔 and © ∈ Σk , the multifunction ©A : Ak → Pow(A) is the interpretation

of © in A. When Σ and A are finite, we say that A is finite. When the range of all

interpretations of A contains only singletons, A is said to be a deterministic algebra

over Σ, or simply a Σ-algebra, meeting the usual definition from Universal Algebra [16].

8

Notice that Σ-nd-algebras allow for partial interpretations of connectives, that is, we

may have ∅ ∈ ran(©A) for some © ∈ Σk , a possibility that is often taken out in many

treatments of non-deterministic algebraic structures — usually called ‘hyperalgebras’

or ‘multialgebras’ [32]. The Σ-nd-algebras with no partial interpretations are said to be

total.

Example 1. Let 𝒱4 := {f ,⊥,⊤, t} and consider a signature ΣFDE containing but two

binary connectives, ∧ and ∨, and one unary connective, ¬. Next, define the ΣFDE-nd-

algebra I := ⟨𝒱4, ·I⟩ that interprets these connectives according to the following (non-

deterministic) truth-tables (here and below, braces will be omitted in the images of the

interpretations):

∧I f ⊥ ⊤ t

f f f f f
⊥ f f , ⊥ f f , ⊥
⊤ f f ⊤ ⊤
t f f , ⊥ ⊤ t, ⊤

∨I f ⊥ ⊤ t

f f , ⊤ t, ⊥ ⊤ t
⊥ t, ⊥ t, ⊥ t t
⊤ ⊤ t ⊤ t
t t t t t

¬I

f t
⊥ ⊥
⊤ ⊤
t f

The non-deterministic character of this algebra can be observed in several entries of the

interpretations of ∧ and ∨. For example, the output of ∧I when taking the input (⊥,⊥)

is the set {f ,⊥}, meaning that there are two possible values or choices provided by this

interpretation under this input.

For the remainder of this subsection, let A and B be arbitrary Σ-nd-algebras.

We say that B is a subalgebra of A, denoted by B 6 A, when B ⊆ A and, for all k ∈ 𝜔,

© ∈ Σk and y1, . . . , yk ∈ B, we have ©B(y1, . . . , yk) ⊆ ©A(y1, . . . , yk). Every X ⊆ A

induces a subalgebra AX := ⟨X , ·AX ⟩ of A, with ©AX (x1, . . . , xk) := ©A(x1, . . . , xk) ∩ X ,

for all k ∈ 𝜔, © ∈ Σk and x1, . . . , xk ∈ X . The collection of all subsets of A whose elements

9

are in at least one induced total subalgebra of A is denoted by T(A), that is

T(A) :=
⋃︁

∅̸=X⊆A
AX is total

Pow(X). (2.1)

Example 2. Let E := ⟨𝒱4, ·E⟩ be the ΣFDE-nd-algebra whose interpretations are given

by the following tables:

∧E f ⊥ ⊤ t

f f f f f
⊥ f ⊥ f ⊥
⊤ f f ⊤ ⊤
t f ⊥ ⊤ t

∨E f ⊥ ⊤ t

f f ⊥ ⊤ t
⊥ ⊥ ⊥ t t
⊤ ⊤ t ⊤ t
t t t t t

¬E

f t
⊥ ⊥
⊤ ⊤
t f

It is easy to check that E is a subalgebra of the Σ-nd-algebra I given in the previous

example.

Example 3. Let K := ⟨𝒱4, ·K⟩ be the ΣFDE-nd-algebra such that ·K is the same as ·E

except that ∧K(⊤,⊥) = ∨K(⊤,⊥) = ∨K(⊥,⊤) = ∧K(⊥,⊤) = ∅, as the following tables

show:

∧K f ⊥ ⊤ t

f f f f f
⊥ f ⊥ ∅ ⊥
⊤ f ∅ ⊤ ⊤
t f ⊥ ⊤ t

∨K f ⊥ ⊤ t

f f ⊥ ⊤ t
⊥ ⊥ ⊥ ∅ t
⊤ ⊤ ∅ ⊤ t
t t t t t

¬K

f t
⊥ ⊥
⊤ ⊤
t f

Observe that this is an example of a non-deterministic algebra with partial interpretations,

and note that T(K) = {X ⊆ 𝒱4 | {⊤,⊥} ̸⊆ X}.

A mapping v : A → B is a homomorphism from A to B when, for all k ∈ 𝜔,

© ∈ Σk and x1, . . . , xk ∈ A, we have

f [©A(x1, . . . , xk)] ⊆ ©B(f (x1), . . . , f (xk)). (2.2)

10

Notice that, in case A is deterministic (provided we identify singletons with their elements)

we may simply write ‘∈’ in the place of ‘⊆’, and when both A and B are deterministic, we

may use ‘=’ instead, matching thus the usual notion of homomorphism for Σ-algebras [16].

The set of all homomorphisms from A to B is denoted by Hom(A,B). When A = B, we

write End(A) for the set of endomorphisms on A.

Let P be a denumerable set of propositional variables and Σ be a proposi-

tional signature. The absolutely free (deterministic) Σ-algebra freely generated by

P is denoted by LΣ(P) and called the Σ-language generated by P. The elements of

LΣ(P) are called Σ-formulas, and those among them that are not propositional vari-

ables are called Σ-compounds. Given Φ ⊆ LΣ(P), we denote by Φc the set LΣ(P)∖Φ.

When speaking informally, we may refer to Σ-formulas simply as sentences or propo-

sitions. The homomorphisms from LΣ(P) to A are called valuations on A, and we let

Val(A) := Hom(LΣ(P),A). Additionally, endomorphisms on LΣ(P) are dubbed substitu-

tions, and we let SubsP
Σ := End(LΣ(P)). When there is no risk of confusion, we may omit

the set of propositional variables and simply write SubsΣ.

Lemma 4. Let A and B be Σ-nd-algebras such that B 6 A. Then {v↑A | v ∈ Val(B)} ⊆

Val(A).

Proof. See [7], Proposition 4.8.

Given 𝜙 ∈ LΣ(P), let subf(𝜙) be the set of subformulas of 𝜙 — that is,

subf(𝜙) := {p} if 𝜙 = p ∈ P and subf(©(𝜓1, . . . , 𝜓k)) := {𝜙} ∪
⋃︀k

i=1 subf(𝜓i) if

𝜙 = ©(𝜓1, . . . , 𝜓k) — and let props(𝜙) denote the set of propositional variables oc-

curring in 𝜙 — that is, props(𝜙) := subf(𝜙) ∩ P. If props(𝜙) = {p1, . . . , pk}, we say that

𝜙 is k-ary and we let 𝜙A : Ak → Pow(A) be the k-ary multifunction on A induced by 𝜙,

where, for all x1, . . . , xk ∈ A, we have 𝜙A(x1, . . . , xk) = {v(𝜙) | v ∈ Val(A) and v(pi) =

xi , for1 ≤ i ≤ k}. Moreover, given 𝜓1, . . . , 𝜓k ∈ LΣ(P), we write 𝜙(𝜓1, . . . , 𝜓k) for the

Σ-formula 𝜙LΣ(P)(𝜓1, . . . , 𝜓k), and, in case Φ ⊆ LΣ(P) is a set of k-ary Σ-formulas, we let

11

Φ(𝜓1, . . . , 𝜓k) := {𝜙(𝜓1, . . . , 𝜓k) | 𝜙 ∈ Φ}. Another function on LΣ(P) gives us the size of

a Σ-formula as the cardinality of the multiset of subformulas (that is, when repetition is al-

lowed), being defined as size(𝜙) := 1, if 𝜙 ∈ P , and size(©(𝜓1, . . . , 𝜓k)) := 1+
∑︀k

i=1 size(𝜓i)

otherwise.

We call value-assignments on A the mappings f : Φ→ A, where Φ ⊆ LΣ(P). A

value-assignment f on A is called legal when the following conditions are satisfied:

(L1) Φ is closed under subformulas;

(L2) f (©(𝜙1, . . . , 𝜙k)) ∈ ©A(f (𝜙1), . . . , f (𝜙k)), for all ©(𝜙1, . . . , 𝜙k) ∈ Φ;

(L3) ran(f) ∈ T(A).

A fundamental property of LΣ(P) is the universal mapping property, establishing that,

when A is deterministic, every value-assignment f : P → A (notice that the domain here

is P) can be uniquely extended to a homomorphism from LΣ(P) to A. For Σ-nd-algebras

in general, we have the result presented in Theorem 5 below, which is sometimes referred

to as effectiveness or analyticity [2] and is responsible for many of the useful features of

non-deterministic semantics. It was first proved for the total non-deterministic case, and

then extended to the partial case in [7], both in the context of (partial non-deterministic)

logical matrices. Condition (L3) is what allowed for the extension of this result. We

reproduce here the proof for self-containment.

Theorem 5. Let A be a Σ-nd-algebra. Then every legal value-assignment on A can be

extended to a valuation on A.

Proof. Let f : Φ→ A be a legal value-assignment on a Σ-nd-algebra A. Then, by (L3),

f [Φ] ∈ T(A), meaning that f [Φ] ⊆ X , for some nonempty X ⊆ A, such that AX is a total

Σ-nd-algebra. We proceed to define a valuation f * on AX extending f , which, in view of

Lemma 4, will give us the desired result. In this direction, recursively define a mapping

f *
: LΣ(P)→ X by setting (a): f *

(𝜙) := f (𝜙) for each 𝜙 ∈ Φ, (b): f *
(p) := y, for each

p ∈ P∖Φ and a fixed x ∈ X , and (c): for all ©(𝜓1, . . . , 𝜓k) ̸∈ Φ, f *
(©(𝜓1, . . . , 𝜓k)) := y,

12

for a choice of y ∈ ©AX (f *
(𝜓1), . . . , f

*
(𝜓k)) — always available, as AX is total. Clearly,

(a), (b) and (c) guarantee that f * is well-defined and extends f . In order to prove that f *

is a homomorphism, let 𝜙 := ©(𝜓1, . . . , 𝜓k) ∈ LΣ(P). If, on the one hand, 𝜙 ∈ Φ, we have

𝜓1, . . . , 𝜓k ∈ Φ, as Φ is closed under subformulas, by (L1); then, by (a), f *
(𝜓i) = f (𝜓i),

for all 1 ≤ i ≤ k, and, by (a) again and (L2), f *
(©(𝜓1, . . . , 𝜓k)) = f (©(𝜓1, . . . , 𝜓k)) ∈

©A(f (𝜓1), . . . , f (𝜓k)) ∩ X = ©AX (f (𝜓1), . . . , f (𝜓k)) = ©AX (f *
(𝜓1), . . . , f

*
(𝜓k)). If, on the

other hand, 𝜙 ̸∈ Φ, (c) guarantees the desired result.

2.2. A broad account of logic

The present work is not committed to a specific notion of logic. Actually, we

will deal with and compare a variety of notions, some of them well-known, like those

consisting in relations over formulas satisfying the Tarskian axioms, and some others

probably new, at the present moment, to most readers. For this reason, the word “logic”

will seldomly appear without qualifiers. As may happen sometimes in informal prose,

however, we now give a very broad account of logic, to be considered when this word

appears alone in a sentence.

For us, a logic (over Σ) is a subset of the set of statements determined by a

chosen logical framework. The frameworks of interest in this work are the following:

• Set-Fmla: logics are 2-place relations ⊆ Pow(LΣ(P))×LΣ(P), that is, statements

have the form of pairs (Φ, 𝜓), which we denote by Φ � 𝜓, for Φ a set of formulas and

𝜓 a formula.

• Set-Set: logics are 2-place relations � ⊆ Pow(LΣ(P)) × Pow(LΣ(P)), that is,

statements have the form of pairs (Φ,Ψ), being denoted by Φ � Ψ, for Φ and Ψ sets

of formulas. Observe that every Set-Set logic � induces a Set-Fmla logic � ,

called the Set-Fmla companion of �, such that, for all Φ ∪ {𝜓} ⊆ LΣ(P), Φ � 𝜓

if, and only if, Φ � {𝜓}. In some situations, knowing that a Set-Fmla logic is the

13

Set-Fmla companion of a Set-Set logic enables us to draw useful conclusions

about each of them (see [57]). Furthermore, we will denote by I the complement of

�, sometimes referred to as the compatibility relation associated with �.

• Set2-Set2: logics are 2× 2-place relations ·
· |

·
· ⊆ (Pow(LΣ(P)))2 × (Pow(LΣ(P)))2,

that is, statements have the form of 2× 2-place tuples ((Φ11,Φ21), (Φ12,Φ22)), which

we denote by
(︁
Φ22 Φ12

Φ11 Φ21

)︁
. A Set2-Set2 consequence judgment is an assertion of the

form
(︁
Φ22 Φ12

Φ11 Φ21

)︁
∈ ·

· |
·
· , and, when it holds, we write Φ22

Φ11
|Φ12

Φ21
. We will denote by ·

·×|
·
·

the complement of ·
· |

·
· , sometimes called the compatibility relation associated with

·
· |

·
· . In Section 2.4, we will see that this framework provides a rich environment

for developing logics involving independent notions of acceptance and rejection. In

addition, a Set2-Set2 logic has many aspects, which can be studied as Set-Set

logics by themselves, as we shall see.

Statements belonging to a logic are, more generally, called consecutions of that logic.

The consecutions of a logic are intended to represent the fact that, according to that

logic, one or more formulas follow from, or are consequences of, other formulas. When

writing sets of formulas in the scope of a statement, we usually omit curly braces. Also,

given variables Φ and Ψ for sets of formulas, we write Φ,Ψ instead of Φ ∪Ψ.

The frameworks Set-Fmla and Set-Set are one-dimensional frameworks, and

logics conforming to them are called one-dimensional logics. On the other hand, the

framework Set2-Set2 is a two-dimensional framework, and logics conforming to them

are referred to as two-dimensional logics. In the subsections that follow, we will present

and discuss some topics related to specific notions of logic, which are, in essence, classes

of logics of the frameworks listed above, determined by specific properties.

14

2.3. One-dimensional logics

In this section, we will present different abstract definitions of one-dimensional

logics considered in the literature, as well as some ways by which we may obtain

concretizations of those notions via semantical structures. We will begin with the most

common notions in Set-Fmla and Set-Set, the so-called consequence relations, then

we will proceed to other notions motivated by some limitations of consequence relations

with respect to inferential many-valuedness [42, 13].

2.3.1. Consequence relations

A Set-Fmla consequence relation (over Σ) is a Set-Fmla logic t satisfying

the following properties, for all Φ,Ψ, {𝜓} ⊆ LΣ(P):

(R) Φ, 𝜓
t
𝜓

(M) if Φ
t
𝜓, then Φ,Ψ

t
𝜓

(T+) if Φ,Ψ
t
𝜓 and Φ

t
𝜙 for all 𝜙 ∈ Ψ, then Φ

t
𝜓.

Properties (R), (M) and (T+) are called, respectively, reflexivity, monotonicity and

transitivity. When t satisfies, in addition, the property of substitution-invariance, given

by

(S) if Φ
t
𝜓 and 𝜎 ∈ SubsΣ, then 𝜎[Φ]

t
𝜎(𝜓).

it is said to be substitution-invariant. Moreover, t may be finitary, which is to say that

it satisfies

(F) if Φ
t
𝜓, then, for some finite Φf ⊆ Φ, Φf t

𝜓.

In case t is a finitary consequence relation, (T+) may be replaced by

(T) if Φ, 𝜙
t
𝜓 and Φ

t
𝜙, then Φ

t
𝜓.

Substitution-invariant and finitary Set-Fmla consequence relations are called standard.

A Set-Set consequence relation (over Σ) is a Set-Set logic �t ⊆ Pow(LΣ(P))×

15

Pow(LΣ(P)) satisfying, for all Φ,Ψ,Φ′,Ψ′ ⊆ LΣ(P),

(O) if Φ ∩Ψ ̸= ∅, then Φ �t Ψ

(D) if Φ �t Ψ, then Φ,Φ′ �t Ψ,Ψ′

(C) if Π,Φ �t Ψ,Πc for all Π ⊆ LΣ(P), then Φ �t Ψ.

Properties (O), (D) and (C) are called overlap, dilution and cut, respectively. The

relation �t is substitution-invariant when it satisfies

(SS) if Φ �t Ψ and 𝜎 ∈ SubsΣ, then 𝜎[Φ] �t 𝜎[Ψ].

and it is finitary when it satisfies

(FS) if Φ �t Ψ, then Φf �t Ψf for some finite Φf ⊆ Φ and Ψf ⊆ Ψ.

It is worth pointing out that, when we constrain the succedents of Set-Set consecutions

to singletons, we obtain that Set-Fmla consequence relations are particular cases of

Set-Set consequence relations. We may refer to consequence relations, either Set-Fmla

or Set-Set, as Tarskian logics.

We move now to ways of obtaining realizations of these abstract descriptions of

consequence relations, beginning with the semantical structures called logical matrices.

2.3.2. Logical matrices and entailment relations

A non-deterministic Σ-matrix, or simply Σ-nd-matrix, is a structure M := ⟨A,D⟩,

where A is a Σ-nd-algebra, whose carrier is the set of truth-values, and D ⊆ A is the set

of designated truth-values. In general, whenever X ⊆ A, we denote A∖X by X . In case A

is deterministic, we simply say that M is a Σ-matrix. Also, M is finite when A is finite.

When talking about M, we may write Val(M) to refer to Val(A), the set of M-valuations.

Every Σ-nd-matrix M induces a substitution-invariant Set-Set consequence relation

over Σ, denoted by �t
M , such that

Φ �t
M Ψ if, and only if, for all v ∈ Val(M), v[Φ] ∩ D ̸= ∅ or v[Ψ] ∩ D ̸= ∅ (2.3)

16

The Set-Fmla companion of �t
M will be denoted by M

t . It is known that, when A is

finite, �t
M is finitary [57]. The above definition, when read in implicative form, tells us

that, if Φ �t
M Ψ, then, for all M-valuations, at least one formula in Ψ must be assigned

to a designated value in case every formula in Φ is assigned to a designated value. It is

often more useful to consider the compatibility relation It
M , according to which

Φ It
M Ψ if, and only if, for some v ∈ Val(M), v[Φ] ⊆ D and v[Ψ] ⊆ D (2.4)

A valuation satisfying the right-hand side condition above is usually called a countermodel

for the statement Φ � Ψ in M.

It is worth mentioning that, in this work, we call non-deterministic matrices

what in the literature is commonly referred to as partial non-deterministic matrices (or

“PNmatrices” [7], for short). That is, non-deterministic matrices (or “Nmatrices”) are

usually assumed to be total (meaning that their algebraic counterparts are total) [2]. We

perform this change due to the fact that all the results we present in this work apply to

this more general setting, in view of the extension of the property of effectiveness (recall

Theorem 5) to the partial case.

Let ℳ := {Mi}i∈I be a family of Σ-nd-matrices. The Set-Set and Set-Fmla

consequence relations associated to ℳ are given, respectively, by ℳ
t

:=
⋂︀

i∈I Mi

t

and �t
ℳ :=

⋂︀
i∈I �t

Mi . Given a Set-Set consequence relation �t and a Set-Fmla

consequence relation t , we say that ℳ characterizes �t when �t = �t
ℳ and that ℳ

characterizes t when t
= ℳ

t . In both frameworks, we have the fundamental result,

proved first by Wójcicki in 1970 [63] for Set-Fmla and then for Set-Set [24], stating

that every substitution-invariant consequence relation over Σ is characterized by a family

of Σ-matrices:

Theorem 6. Every substitution-invariant consequence relation, being it Set-Fmla or

Set-Set, is characterized by a family of Σ-matrices.

17

In other words, substitution-invariant consequence relations over Σ cannot escape

from having a semantics based on Σ-matrices. Whether a single matrix is enough depends

on the verification of other properties on the concerned consequence relations, like

cancellation, necessary and sufficient for the Set-Fmla case, plus stability, for the Set-

Set case. The reader is referred to [24] for the definitions of these properties and the

proofs of these results. In the next subsection, we will see that Theorem 6 is one of the

ingredients for proving that consequence relations cannot avoid having another kind

of semantics, this time causing much more surprise and being responsible for raising

important questions about the project of many-valued logics.

2.3.3. Suszko’s thesis

We begin by introducing a general kind of semantics, which is more liberal

than Σ-nd-matrices in not demanding any kind of algebraic character or imposing any

condition on the underlying valuations. A valuation semantics over Σ is a structure

S := ⟨{vi : LΣ(P)→ 𝒱i}i∈I , {𝒟i}i∈I ⟩, where 𝒟i ⊆ 𝒱i , for each i ∈ I , is the set of

designated values associated to vi . Both components of S are families whose set I of

indices is assumed to be arbitrary. Notice that every Σ-nd-matrix M induces a valuation

semantics SM where the family of valuations have as members the elements of Val(M)

and the sets of designated elements are the set of designated values of M.

A valuation semantics S induces a Set-Set consequence relation �t
S in a similar

way as for the case of Σ-nd-matrices presented in the previous section:

Φ �t
S Ψ if, and only if, for all i ∈ I , vi [Φ] ∩ 𝒟i ̸= ∅ or vi [Ψ] ∩ 𝒟i ̸= ∅ (2.5)

In case 𝒱i has only and the same two elements for all i ∈ I , we say that S is

a bivaluation semantics. A surprising result is that consequence relations, besides not

escaping from a matrix-based semantics (Theorem 6), cannot avoid having a bivaluation

18

semantics. This fact was used by Roman Suszko [61] to justify the thesis according to

which there are only two logical values: the True (t) and the False (f). The proof is

straightforward, relying on the so-called Suszko’s theorem, given in Theorem 7 below,

which produces a bivaluation semantics for a given family of matrices using the valuations

and designated sets of those very matrices (a procedure usually referred to as Suszko’s

reduction).

Theorem 7 (Suszko’s theorem [61]). Every family ℳ of Σ-matrices has a characteristic

bivaluation semantics.

Corollary 8. Every substitution-invariant consequence relation, being it Set-Fmla or

Set-Set, has a characteristic bivaluation semantics.

In view of the above result, it seems hard to oppose to Suszko’s thesis: there

is always a shadow of bivalence behind many-valuedness, at least when we talk about

consequence relations. We say, for this reason, that consequence relations are inferentially

two-valued. We will see, however, that inferentially many-valuedness is possible: we only

have to work with other notions of (one-dimensional or two-dimensional) logics.

2.3.4. q-consequences and p-consequences

The characteristics of Σ-matrices (and their induced consequence relations)

that makes the proof of Theorem 7 work so smoothly can be easily spotted. First, the

collection of truth-values is bipartitioned into a set of designated truth-values and a set

of non-designated truth-values. Second, the associated consequence relation is defined in

terms of preservation of designatedness. A natural way to begin a quest for inferential

many-valuedness would be to modify some of those characteristics.

One could first try to change the notion of logic induced by a Σ-matrix M by

19

considering the preservation of non-designated values:

Φ �f
M Ψ if, and only if, for all v ∈ Val(M), v[Φ] ∩ D ̸= ∅ or v[Ψ] ∩ D ̸= ∅ (2.6)

It is easy to check, however, that this logic is also a consequence relation and, thus, still

inferentially two-valued. Notably, there is not much space left for modifications on the

notion of logic in a Σ-nd-matrix, due to the bipartition of the set of truth-values. We

have to follow another path if we want to be in the presence of (at least) a third logical

value.

Following the work by G. Malinowski [42] on q-consequence operators (‘q’ is

for quasi), we may achieve this goal by generalizing the notion of Σ-nd-matrices by

getting rid of the bipartition of the set of truth-values, thus modifying the geometry of

the matrix structure. Define a Σ-nd-q-matrix to be a structure Q := ⟨A,Y,N⟩, where

A is a Σ-nd-algebra, and Y,N ⊆ A are disjoint sets of designated and antidesignated

truth-values, intuitively read as values representing acceptance and rejection, respectively.

For convenience, we let Y
:= A∖Y and N:= A∖N, the sets of non-designated and non-

antidesignated truth-values respectively. As with Σ-matrices, we set Val(Q) := Val(A).

Surely, if we remain with the designatedness-preserving or non-designatedness-

preserving (or even antidesignatedness-preserving or non-antidesignatedness-preserving)

notion of consequence, we will end up with a consequence relation as before. In a Σ-nd-q-

matrix, however, we have other options, as rejecting does not coincide with non-accepting.

Investing on the interaction between acceptance and rejection is the way to go. Consider

the one-dimensional Set-Set logic �
q
Q, called q-entailment, defined in the following

20

way [13] 1:

Φ �
q
Q Ψ if, and only if, for all v ∈ Val(Q), v[Φ] ∩ N ̸= ∅ or v[Ψ] ∩

Y

̸= ∅ (2.7)

The corresponding compatibility relation Iq
Q is then given by:

Φ Iq
Q Ψ if, and only if, for some v ∈ Val(Q), v[Φ] ⊆ Nand v[Ψ] ⊆

Y (2.8)

From the latter, it is clear that (O) is not satisfied in general, as there might be values

in Y

∩ N. We may also read this notion in implicative form: Φ follows from Ψ in case at

least one of the formulas in Ψ is accepted whenever all formulas in Φ are non-rejected.

The Set-Fmla companion of �q
Q is denoted by Q .

From an abstract point of view, the notion of consequence just defined is a

concretization of what are called q-consequence relations. As originally presented in [42],

a Set-Fmla q-consequence relation is a relation q ⊆ Pow(LΣ(P))× LΣ(P) satisfying

(M) and (S) plus a weakened version of transitivity, called cumulative transitivity:

(Tq) if Φ, {𝜙 : Φ
q
𝜙} q

𝜓, then Φ
q
𝜓

In the presence of (M), however, the above property turns to be equivalent to (T+).

The Set-Set q-consequence relations were introduced in [12, 13] and consist in relations

�q ⊆ Pow(LΣ(P))× Pow(LΣ(P)) satisfying (D) and (SS), plus

(Cq) if, for some Γ ⊆ LΣ(P), Π,Φ �q Ψ,Πc for every Π ⊆ Γ, then Φ �q Ψ

Such property can be shown to be equivalent to (C), whenever (D) is available.

A version of Wójcicki’s result (Theorem 6) establishes the strict correspondence

between Σ-q-matrices and q-consequence relations:

Theorem 9. [42, Section 4] Every substitution-invariant q-consequence relation, being

1We should point out that the notions related to q-consequence relations and p-consequence relations,
to be presented in the sequel, were originally defined in [42, 27] for the Set-Fmla framework, and,
in [13], they were extended to the Set-Set framework.

21

it Set-Fmla or Set-Set, is characterized by a family of Σ-q-matrices.

Similarly as we did for Σ-matrices, we may define a valuation q-semantics over

Σ as a structure S := ⟨{vi : LΣ(P)→ 𝒱i}i∈I , {Yi}i∈I , {Ni}i∈I ⟩, where Yi ,Ni ⊆ 𝒱i and

Yi ∩ Ni = ∅, for each i ∈ I . We define then

Φ �
q
S Ψ if, and only if, for all i ∈ I , vi [Φ] ∩ Ni ̸= ∅ or vi [Ψ] ∩

Y

i ̸= ∅ (2.9)

When 𝒱i has only and the same three elements for all i ∈ I , we say that S is a trivaluation

q-semantics. Two logical values are not enough to capture q-consequence relations in

general. As proved in [42, 12], we have reached a scenario of inferential many-valuedness:

Theorem 10. [42, Section 4] Every family ℳ of Σ-q-matrices has a characteristic

trivaluation semantics.

Corollary 11. Every substitution-invariant q-consequence relation, being it Set-Fmla

or Set-Set, has a characteristic trivaluation semantics.

One may argue that q-consequences do not represent genuine logics because

they do not necessarily validate reflexivity (properties (R) and (O) for Set-Fmla and

Set-Set, respectively). Indeed, looking through the lenses of preservation of validity

from the premises to the conclusion, not concluding that p is valid when p is among the

formulas presumed to be valid is unexpected, hard to justify. However, q-consequences

can be seen as representing a form of hypothetical reasoning: when all formulas in the

conclusion are not accepted, then at least one premise (here understood as a hypothesis)

must be rejected.

Another inferentially many-valued one-dimensional notion of logic arises when

we abandon transitivity instead of reflexivity. Introduced by S. Frankowski [27], the

p-consequence relations (‘p’ for plausible) are, in Set-Fmla, those relations p ⊆

Pow(LΣ(P)) × LΣ(P) satisfying (R) and (M), or, in Set-Set, those relations �p ⊆

22

Pow(LΣ(P)) × Pow(LΣ(P)) satisfying (O) and (D). As with q-consequences, one way

of obtaining realizations of p-consequences is by means of a matrix structure with a

different geometry.

Define a Σ-nd-p-matrix to be a structure P := ⟨A,Y, N⟩, where A is a Σ-nd-

algebra, and Y ⊆ N⊆ A are the sets of designated and non-antidesignated or plausible

truth-values. We let Val(P) := Val(A). In this case, the associated one-dimensional

Set-Set logic �
p
P, called p-entailment, is defined in the following way [13]:

Φ �
p
P Ψ if, and only if, for all v ∈ Val(P), v[Φ] ∩

Y

̸= ∅ or v[Ψ] ∩ N̸= ∅ (2.10)

The corresponding compatibility relation Ip
P is then given by:

Φ Ip
P Ψ if, and only if, for some v ∈ Val(P), v[Φ] ⊆ Y and v[Ψ] ⊆ N (2.11)

The motivation for p-consequence relations is that of allowing for the loss of

some degree of certainty (of being “certainly true”) when passing from the premises to

the conclusion. The definition of p-entailment just given makes this feature clear: valid

inferences are those that permit concluding non-false from true propositions. We may

formulate and prove (cf. [13]) versions of Theorem 9 and Corollary 10, which, when

combined, give us that p-consequence relations are, as q-consequence relations, also (at

most) inferentially three-valued. One can actually prove that the class of Σ-q-nd-matrices

is isomorphic to the class of Σ-p-nd-matrices [13], so we may define q-entailment and

p-entailment over both kinds of matrices, as done in [28, 58].

In this section, inferentially three-valued notions of one-dimensional logics were

presented, showing that the multiplication of logical values is possible and may be used in

contexts involving hypothetical reasoning or plausibility. We will see in a moment another

notion of inferentially many-valued logic, this time over a two-dimensional framework,

23

which constitutes an inferentially four-valued logic by itself and is also able to encompass,

among others, the inferentially two-valued and three-valued notions we have seen.

2.4. Two-dimensional logics

Recall that logics in one dimension were defined as being Set-Fmla or Set-Set

relations, with no a priori commitments to specific properties, like reflexivity (cf. (R) and

(O)) or transitivity (cf. (T) or (C)). With a single dimension, we are not only able to

express the preservation of truth (designatedness) or falsity (non-designatedness), which

lead to inferentially two-valued logics, but also to represent other kinds of reasoning,

for example, via q- and p-consequences, which are both inferentially (at most) three-

valued notions of logic. Abstractly, this is achieved by abandoning some properties of

consequence relations, and, semantically, by changing the geometry of logical matrices,

with the notions of Σ-nd-q-matrices and Σ-nd-p-matrices.

Recent studies by C. Blasio [11, 12], J. Marcos and H. Wansing [13], with roots

in the works of [41, 14], introduced a two-dimensional, inferentially four-valued notion

of logical consequence worth studying from all typical lenses (abstractly, semantically

and proof-theoretically), and also capable of capturing, in a unified environment, all the

one-dimensional notions we have seen so far, in addition to many others. We will present

in this section the main aspects related to the theory of such two-dimensional logics,

focusing on the abstract characterizations and on the semantics of the two-dimensional

semantical structures called B-matrices, here considered over non-deterministic algebras.

In order to provide an intuitive reading of Set2-Set2 statements, we shall

adopt the notation ΦY,ΦN,Φ N, Φ Yfor arbitrary sets of formulas, instead of, respectively,

Φ11,Φ21,Φ22,Φ12. We read the formulas in ΦY as being accepted; those in ΦN as being

rejected; those in Φ Yas being non-accepted; and those in Φ Nas being non-rejected. In

this direction, Set2-Set2 statements may be read as asserting that, when all formulas

24

in ΦY are accepted and all formulas in ΦN are rejected, then either at least one formula

in Φ Yis accepted or at least one formula in Φ Nis rejected.

We will use 𝛼, 𝛽, 𝛾, . . . to refer to elements in the set {Y, Y

,N, N}. Also, we will

use 𝛼̃ to refer to the flipped counterpart of 𝛼; that is, Ỹ =

Y, ˜Y

= Y, Ñ = Nand
˜N= N. Sometimes these symbols are used to denote sets of distinguished truth-values,

as the reader might check in previous and subsequent sections of this document. The

context will free these different usages from any ambiguity. It is worth pointing out

that these symbols have been used in the literature to denote cognitive attitudes [11],

which may be defined as positions that an agent is allowed to take with respect to a

certain informational content. We consider that such an agent is allowed to take the

positions of acceptance (Y), non-acceptance (Y), rejection (N) or non-rejection (N) with

respect to a given informational content. This agent may also mix positions of acceptance

and rejection, for example, by both accepting and rejecting, both non-accepting and

non-rejecting, both accepting and non-rejecting or both non-accepting and rejecting an

informational content. These four possibilities are depicted in the bilattice in Figure 2.1

(cf. [13]), where the vertices represent the possible combinations of the cognitive attitudes,

which, in turn, are placed on the edges. The values residing in the vertices are logical

values determined by the cognitive attitudes [11]. This bilattice was used in [13] to prove

that the two-dimensional notion of consequence we are about to meet is inferentially

four-valued.

billatice-pic

Figure 2.1.: A bilattice representing the cognitive attitudes on the edges and logical
values in the vertices, the latter emerging from combinations of the respective
adjacent cognitive attitudes.

Cognitive attitudes, as explained above, can be seen as a bilateralist foundation

to reason over propositions, where acceptance and rejection constitute two independent,

25

although interacting, dimensions. In the next subsection, we will present the family of

two-dimensional logics we will be interested in, which provide us with an appropriate

logical environment to work with these bilateralist judgments.

2.4.1. B-consequence relations

A B-consequence relation2 is a collection of Set2-Set2 statements, hereby called

B-statements, according to which any of the following conditions constitute sufficient

guarantee for the Set2-Set2 consequence judgment Φ N
ΦY
|Φ Y

ΦN
to be established (recall that,

given Φ ⊆ LΣ(P), we denote by Φc the set LΣ(P)∖Φ):

(O2) ΦY ∩ Φ Y̸= ∅ or ΦN ∩ Φ N̸= ∅

(D2)
Ψ N

ΨY
|Ψ

Y

ΨN
and Ψ𝛼 ⊆ Φ𝛼 for every 𝛼 ∈ {Y, Y

,N, N}

(C2)
Ωc

S
ΩS
|Ω

c
S

Ω S
for all ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc

N

These properties are easily perceived as generalizations to two-dimensional logics of the

characteristic conditions of Set-Set consequence relations, namely (O), (D) and (C).

Intuitively, (O2) establishes that a formula is accepted (resp. rejected) whenever it is

present in the accepted (resp. rejected) formulas in the antecedent of the consecution

(encoding, thus, a form of identity). In turn, (D2) states that a established consecution

is not lost when new formulas are included in the antecedent and in the succedent of that

very consecution (that is, B-consequence relations encode a form of monotonic reasoning).

Finally, one can look at (C2) contrapositively to see one of its main effects: in case we

are able to accept all formulas in ΦY, reject all formulas in ΦN, non-accept all formulas

in Φ Yand non-reject all formulas in Φ N, then we will be able to assign acceptance and

rejection status to any other formula, covering the whole language in each dimension.

This will, in particular, be useful in building countermodels for consecutions of interest

in Chapter 5.

2We usually take “B” standing for Bilateralism, Bidimensional or Blasio [62].

26

The next result shows that any pair of unary predicates on Σ-formulas, each one

seen as being related to a distinct dimension, induces a B-consequence relation defined in

terms of preservation of at least one of the predicates along its corresponding dimension.

Lemma 12. Let PS, P S : LΣ(P) → {F,T} be predicates on Σ-formulas. Define the

2× 2-place relation ·
· |

·
·PS Sby setting

(P-ent)
Φ N

ΦY
|Φ

Y

ΦN
PS S iff

PS[ΦY] ⊆ {T} and P S[ΦN] ⊆ {T} imply

PS[Φ Y] ̸⊆ {F} or P S[Φ N] ̸⊆ {F}
or, in other words,

(P-ent)
Φ N

ΦY
|Φ

Y

ΦN
PS S iff

it is not the case that

PS[ΦY] ⊆ {T}, P S[ΦN] ⊆ {T},

PS[Φ Y] ⊆ {F} and P S[Φ N] ⊆ {F}
Then the above relation is a B-consequence relation.

Proof. Suppose that Φ N
ΦY
×| Φ Y

ΦN
PS S, that is, (a) PS[ΦY] ⊆ {T}, P S[ΦN] ⊆ {T}, PS[Φ Y] ⊆ {F}

and P S[Φ N] ⊆ {F}. For (O2), assume that 𝜙 ∈ ΦY∩Φ Y. Then, by (a), we have PS(𝜙) = T

and PS(𝜙) = F, a contradiction. Similarly for the case 𝜙 ∈ ΦN ∩ Φ N. For (D2), assume

that Ψ𝛼 ⊆ Φ𝛼, for each 𝛼 ∈ {Y,
Y

,N, N}. Hence, (b): PS[ΨY] ⊆ PS[ΦY], PS[Ψ Y] ⊆ PS[Φ Y],

P S[ΨN] ⊆ P S[ΦN] and P S[Ψ N] ⊆ P S[Φ N]. By (a), (b) and transitivity of ⊆, then, we obtain

PS[ΨY] ⊆ {T}, P S[ΨN] ⊆ {T}, PS[Ψ Y] ⊆ {F} and P S[Ψ N] ⊆ {F}, as desired. Finally,

for (C2), let ΩS := {𝜙 ∈ LΣ(P) | PS(𝜙) = T} and Ω S:= {𝜙 ∈ LΣ(P) | P S(𝜙) = T}. By

(a), we have that ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc
N, and clearly Ωc

S
ΩS
×| Ω

c
S

Ω S
PS S, finishing the

proof.

A B-consequence relation is substitution-invariant if, in addition, Φ N
ΦY
|Φ Y

ΦN
holds

whenever:

(S2)
Ψ N

ΨY
|Ψ

Y

ΨN
and Φ𝛼 = 𝜎(Ψ𝛼) for every 𝛼 ∈ {Y, Y

,N, N}, for a substitution 𝜎

Notice that we have chosen to present (C2) in a more compact formulation

instead of the standard axioms introduced in [13] and written below:

(Cy) given Ψ ⊆ LΣ(P), if Φ N

ΦY,ΩS
|Φ

Y,Ψ∖ΩS

ΦN
for all ΩS ⊆ Ψ, then Φ N

ΦY
|Φ

Y

ΦN

27

(Cn) given Ψ ⊆ LΣ(P), if Φ N,Ψ∖Ω S

ΦY
| Φ Y

Φ N,Ω S
for all Ω S⊆ Ψ, then Φ N

ΦY
|Φ

Y

ΦN

When we restrict the above properties to LΣ(P) (that is, taking the particular case in

which Ψ above is LΣ(P)), we have the following properties, called their cut for LΣ(P)

versions:

(Cy
L) if Φ N

ΦY,ΩS
|Φ

Y,Ωc
S

ΦN
for all ΩS ⊆ LΣ(P), then Φ N

ΦY
|Φ

Y

ΦN

(Cn
L) if Φ N,Ω

c
S

ΦY
| Φ Y

ΦN,Ω S
for all Ω S⊆ LΣ(P), then Φ N

ΦY
|Φ

Y

ΦN

It follows, then, that:

Proposition 13. Properties (Cy) and (Cn) are equivalent, respectively, to (Cy
L) and

(Cn
L). The latter pair of properties, in turn, is equivalent to (C2).

Proof. Notice that (Cy) directly implies (Cy
L), by taking Ψ as LΣ(P). Conversely, let

Ψ ⊆ LΣ(P) and suppose that Φ N
ΦY
×| Φ Y

ΦN
. Then, by (Cy

L), there is a ΩS ⊆ LΣ(P) such that

(a) Φ N
ΦY,ΩS
×| Φ

Y,Ωc
S

ΦN
. By taking ΩS := Ψ ∩ ΩS, we have that ΩS ⊆ ΩS and Ψ∖ΩS ⊆ Ωc

S. Hence,

from (a) and (D2), we have Φ N
ΦY,ΩS
×| Φ

Y,Ψ∖ΩS
ΦN

, as desired. The equivalence between (Cn)

and (Cn
L) can be proved similarly.

We proceed to prove the equivalence between (C2) and the standard axioms, in

their cut for LΣ(P) versions. In order to see that (C2) implies (Cy
L) and (Cn

L), suppose

that Φ N
ΦY
×| Φ Y

ΦN
. Then, by (C2), there are ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc

Nsuch that
Ωc

S
ΩS
×| Ω

c
S

Ω S
. Since ΦN ⊆ Ω Sand Φ N⊆ Ωc

S, by the contrapositive version of (D2) we have
Φ N
ΩS
×| Ω

c
S

ΦN
and thus Φ N

ΦY,ΩS
×| Φ

Y,Ωc
S

ΦN
, because ΦY ⊆ ΩS and Φ Y⊆ Ωc

S, proving (Cy
L). We can

prove (Cn
L) analogously.

For the other direction, again contrapositively, suppose that Φ N
ΦY
×| Φ Y

ΦN
. Then, by

(Cy
L), there is a ΩS ⊆ LΣ(P) such that Φ N

ΦY,ΩS
×| Φ

Y,Ωc
S

ΦN
. By (O2), we have that (ΦY ∪ ΩS) ∩

(Φ Y∪ Ωc
S) = ∅, which implies that ΦY ⊆ ΩS and Φ Y⊆ Ωc

S, hence ΦY ⊆ ΩS ⊆ Φc Yand
Φ N
ΩS
×| Ω

c
S

ΦN
. Similarly, from this and (Cn

L), we have that there exists a ΦN ⊆ Ω S⊆ Φc
Nsuch

that Ωc
S

ΩS
|Ω

c
S

Ω S
, as desired.

28

The properties of (substitution-invariant) B-consequence relations discussed up

to now can be easily seen to be preserved under arbitrary intersections, as the result

below states.

Lemma 14. Let {Ci}i∈I be a family of B-consequence relations. Then C :=
⋂︀

i∈I Ci is a

B-consequence relation. If each Ci is substitution-invariant, then C is also substitution-

invariant.

A B-consequence relation is called finitary when it enjoys the property

(F2) if Φ N

ΦY
|Φ

Y

ΦN
, then Φf

N
Φf

Y
|Φ

fY

Φf
N

, for some finite Φf
𝛼 ⊆ Φ𝛼, for every 𝛼 ∈ {Y, Y

,N, N}

In finitary B-consequence relations, axiom (C2) is equivalent to the pair

(Cu
S) if, for some 𝜙 ∈ LΣ(P), Φ N

ΦY, 𝜙
|Φ

Y

ΦN
and Φ N

ΦY
|Φ

Y, 𝜙

ΦN
, then Φ N

ΦY
|Φ

Y

ΦN

(Cu
S) if, for some 𝜙 ∈ LΣ(P), Φ N, 𝜙

ΦY
|Φ

Y

ΦN
and Φ N

ΦY
| Φ Y

ΦN, 𝜙
, then Φ N

ΦY
|Φ

Y

ΦN

We will see now that the two-dimensional environment is rich enough to allow

for many one-dimensional logics to coinhabit the same logical structure. In [13], the

authors provide a detailed study of many different one-dimensional aspects associated

to a B-consequence relation. Each aspect corresponds to a collection of B-statements

representing one-dimensional consecutions of a specific format. Just to give a couple of

examples, the so-called gt-aspect of ·
· |

·
· is the collection of all B-statements of the form(︁

∅ Φ Y

ΦY ∅

)︁
such that ∅

ΦY
|Φ Y

∅ , and the gq-aspect of ·
· |

·
· is the collection of all B-statements

of the form
(︁
Φ NΦ

Y

∅ ∅

)︁
such that Φ N

∅ |
Φ Y

∅ . Here, we will consider directly Set-Set logics

associated to a B-consequence relation, in the following way:

Definition 15. Let C := ·
· |

·
· be a B-consequence relation. Define, then, the following

one-dimensional Set-Set logics:

• ΦY �C
t Φ Yif, and only if, ∅

ΦY
|Φ Y

∅

• ΦN �C
f Φ Nif, and only if, Φ N

∅ |
∅
ΦN

• Φ N�
C
q Φ Yif, and only if, Φ N

∅ |
Φ Y

∅

29

• ΦY �C
p ΦN if, and only if, ∅

ΦY
| ∅
ΦN

• ΦY �C
r Φ Nif, and only if, Φ N

ΦY
|∅∅

• ΦN �C
a Φ Yif, and only if, ∅

∅ |
Φ Y

ΦN

Clearly, �C
t and �C

f constitute Set-Set consequence relations. We say that �C
t

and �C
f inhabits, respectively, the t-aspect and the f-aspect of C. Furthermore, as pointed

out in [13], �C
q and �C

p constitute, respectively, a q-consequence and a p-consequence

provided ∅
𝜙
|∅
𝜙

holds for all 𝜙 ∈ LΣ(P). In this case, we say that �C
q and �C

p inhabits,

respectively, the q-aspect and the p-aspect of C. On the other hand, if 𝜙
∅ |

𝜙
∅ hold instead

for all formula 𝜙, we obtain logics which are dual to the latter. Finally, we included

�C
r and �C

a in the above definition for calling the attention to the fact that the aspects

corresponding to the statements of the form
(︁
Φ N∅
ΦY ∅

)︁
and

(︁
∅ Φ Y

∅ ΦN

)︁
were never considered

in the literature, even though it seems natural to do so and study them in separate

(something we leave for future work).

2.4.2. B-matrices and B-entailment

A non-deterministic B-matrix over Σ, or simply Σ-nd-B-matrix, is a structure

M := ⟨A,Y,N⟩, where A is a Σ-nd-algebra, Y ⊆ A is the set of designated values and

N ⊆ A is the set of antidesignated values of M. For convenience, we define Y

:= A∖Y to

be the set of non-designated values, and N:= A∖N as the set of non-antidesignated values

of M. In case A is finite, M is said to be finite. Given X ⊆ A, the sub-Σ-nd-B-matrix

induced by X is given by MX := ⟨AX ,Y ∩ X ,N ∩ X⟩. The elements of Val(A) are dubbed

M-valuations.

Let M := ⟨A,Y,N⟩ be a Σ-nd-B-matrix. The B-entailment relation induced by

M is a 2× 2-place relation ·
· |

·
· M over LΣ(P) such that

(B-ent) Φ N

ΦY
|Φ

Y

ΦN
M iff

there is no M-valuation v such that

v(Φ𝛼) ⊆ 𝛼 for every 𝛼 ∈ {Y, Y

,N, N},

30

for every ΦY,ΦN,Φ Y,Φ N⊆ LΣ(P). Whenever Φ N
ΦY
|Φ Y

ΦN
M , we say that the B-statement(︁

Φ NΦ

Y

ΦY ΦN

)︁
holds in M. An M-valuation that bears witness to Φ N

ΦY
×| Φ Y

ΦN
M is called a counter-

model for
(︁
Φ NΦ

Y

ΦY ΦN

)︁
in M.

Proposition 16. The B-entailment relation induced by a Σ-nd-B-matrix is a substitution-

invariant B-consequence relation.

Proof. Given an M-valuation v, consider the predicates Pv
S(·) := v(·) ∈ Y and Pv

S(·) :=

v(·) ∈ N. We can see that ·
· |

·
· M =

⋂︀{︀ ·
· |

·
·P

v
S S
}︀

v∈Val(M)
, where each ·

· |
·
·P

v
S Sis defined as per

Lemma 12 and, by this same result, is a B-consequence relation. By Lemma 14, then,
·
· |

·
· M is a B-consequence relation, thus it remains to prove that it is substitution-invariant.

For that, contrapositively, suppose that, for some 𝜎 ∈ SubsΣ, we have 𝜎[Φ N]
𝜎[ΦY]
×| 𝜎[Φ

Y]
𝜎[ΦN]

M . Then,

for some v ∈ Val(M), v[𝜎[Φ N]]
v[𝜎[ΦY]]

×| v[𝜎[Φ Y]]
v[𝜎[ΦN]]

M . As v ∘𝜎 is itself an M-valuation, we are done.

In the next examples, let Y4 := {⊤, t}, N4 := {⊤, f}, and recall the ΣFDE-nd-

algebras described in Examples 1, 2 and 3.

Example 17. Consider the ΣFDE-nd-B-matrix MI := ⟨I,Y4,N4⟩ (cf. Example 1). The

t-aspect of ·
· |

·
· M

I is inhabited by the logic introduced in [4], which incorporates some

principles on how a processor would be expected to deal with information about an arbitrary

set of formulas.

Example 18. Consider the ΣFDE-nd-B-matrix ME := ⟨E,Y4,N4⟩ (cf. Example 2). The

induced B-entailment corresponds to the logic EB presented in [11], studied as a version

of Dunn-Belnap’s four-valued logic in which the informational content of sentences is

also taken into account in inferences, instead of only the truth content.

Example 19. Consider the ΣFDE-nd-B-matrix MK := ⟨K,Y4,N4⟩ (cf. Example 3). As

shown in [17], Kleene’s strong three-valued logic inhabits the t-aspect of ·
· |

·
· M

K .

Example 20. Let 𝒱5 := {f ,F , I ,T , t}, Y5 := {T , I , t}, N5 := {T , I , f }, and consider

a signature ΣmCi containing but three binary connectives, ∧, ∨ and ⊃, and two unary

31

connectives, ¬ and ∘. Inspired by the 5-valued non-deterministic logical matrix presented

in [1] for the logic of formal inconsistency called mCi [47] — to which the whole Chapter 6

is devoted —, we define the ΣmCi-nd-B-matrix MmCi := ⟨A5,Y5,N5⟩ with the following

interpretations:

∧A5(x1, x2) :=

⎧⎪⎪⎨⎪⎪⎩
{f } if either x1 ̸∈ Y5 or x2 ̸∈ Y5

{t, I} otherwise

∨A5(x1, x2) :=

⎧⎪⎪⎨⎪⎪⎩
{t, I} if either x1 ∈ Y5 or x2 ∈ Y5

{f } if x1,x2 ̸∈ Y5

⊃A5(x1, x2) :=

⎧⎪⎪⎨⎪⎪⎩
{t, I} if either x1 ̸∈ Y5 or x2 ∈ Y5

{f } if x1 ∈ Y5 and x2 ̸∈ Y5

f F I T t

¬A5 t,I T t,I F f

f F I T t

∘A5 T T F T T

We note that the logic mCi inhabits the t-aspect of ·
· |

·
· MmCi . It is worth pointing out that,

up to now, no finite Hilbert-style calculus was known to axiomatize this logic; however, a

finite two-dimensional symmetrical Hilbert-style calculus (see the related definitions in

Section 2.5.2) for mCi results smoothly from the procedure described in Chapter 5.

We have seen that one-dimensional consequence relations are inferentially two-

valued, and the price to pay for inferentially many-valuedness is to abandon some

axioms which one may regard as essential for a logic, like reflexivity and transitivity.

In two dimensions, however, inferential many-valuedness is built in the very notion of

B-consequence relation, whose axioms are generalizations of those of one-dimensional

consequence relations. This result obtains from generalizations of Theorems 6 and 7,

which we present in the next two results. Detailed proofs may be found in [13].

32

Theorem 21. Every substitution-invariant B-consequence relation is characterized by a

family of Σ-B-matrices.

In a similar way as the definitions of valuation semantics, q-semantics and

p-semantics, which generalize the corresponding semantics of matrices, we define a

valuation B-semantics as a structure S := ⟨{vi : LΣ(P)→ 𝒱 i}i∈I , {Yi}i∈I , {Ni}i∈I ⟩, where

Yi ,Ni ⊆ 𝒱 i , for each i ∈ I , are sets of designated and antidesignated values associated to

the valuation vi . We adopt also here the notation Y

i and Ni to refer to the sets 𝒱 i∖Yi

and 𝒱 i∖Ni , respectively. We may easily check that S induces a B-consequence relation
·
· |

·
· S such that

(B-sem) Φ N

ΦY
|Φ

Y

ΦN
S iff

there is no i ∈ I such that

vi(Φ𝛼) ⊆ 𝛼i for every 𝛼 ∈ {Y, Y

,N, N},
for every ΦY,ΦN,Φ Y,Φ N⊆ LΣ(P). When |𝒱i | = 4 for all i ∈ I , S is said to be a

tetra-valuation B-semantics.

Then:

Theorem 22. Every family of Σ-B-matrices has a tetra-valuation B-semantics.

2.5. Deductive formalisms

Semantical structures confer meaning to the sentences of a given language by

the way they assign truth-values to these very sentences. They provide means to obtain

logics based on the compatibility of the qualities associated to those truth-values, like

the qualities of being designated or antidesignated. An alternative to this semantical

approach to logics is Proof Theory, which consists in the investigation of inferential

mechanisms, the so-called deductive systems, that manipulate syntactical objects, like

formulas and sequents, in order to explain in terms of step-by-step derivations why a

certain statement holds according to a given logic. In many cases, this allows us to assign

meaning to the connectives of a logic based on their inferential behaviour, something that

33

occupies logicians working in the field of Philosophical Proof Theory (see [36, Chapter 4]).

We formulate below general proof-theoretical notions that allows us to compare different

classes of deductive systems.

Deductive formalisms are, in a broad sense, specifications of two kinds of objects:

rules of inference and derivations. The former are usually collections of rule instances,

which are specified in terms of the kind of syntactical objects they manipulate — formulas,

sequents or B-sequents, for example — and the way we may identify their antecedent

(those objects taken as inputs), and their succedent (those objects that are produced

from the inputs). Derivations, in turn, have to be specified as structures that can be built

somehow by applications of the rules of inference (or, as is usual, of their rule instances).

We obtain deductive systems on top of a deductive formalism just by collecting specific

rules of inference conforming to the specifications of that formalism. Deductive systems

may be grouped into deductive approaches, according to general characteristics of their

rules of inference. Moreover, deductive systems are expected to induce some notion of

logic, specified as a collection of statements for which there are derivations witnessing

the provability — defined according to some criterion — of these very statements in the

system.

After this general account of deductive systems, we proceed to discuss some

classes of deductive formalisms, allowing us to compare them later with the formalisms

presented in future chapters.

2.5.1. G-formalisms

Popular deductive formalisms are those whose rules of inference are collections of

(n + 1)-ary tuples of sequents, which, for us, are objects of the form Φ �𝜓 (for Set-Fmla

formalisms), Φ � Ψ (for Set-Set formalisms) or Φ N
ΦY
‖Φ Y

ΦN
(for Set2-Set2 formalisms),

where the involved sets of formulas are finite. More precisely, a rule of inference justifies

34

a (conclusion-)sequent, the (n + 1)-th element of the tuple, when taking a collection of

(premise-)sequents (the elements occupying positions 1 to n in the tuple) as input. Such

rules are usually specified schematically (that is, by a representative instance containing

variables for formulas and sets of formulas, expected to be replaced by specific formulas

when applied in a derivation) with a horizontal bar separating the premise-sequents

(at the top) and the conclusion-sequent (at the bottom). We call such formalisms G-

formalisms, where ‘G’ stands for ‘Gentzen’. The associated deductive systems are called

G-systems 3.

Example 23. The G-formalism of B-sequents works as in the one-dimensional case, with

the difference that rules manipulate B-sequents and derivations are built in order to show

that a B-sequent of interest is provable. We limit ourselves here to present an example of

a B-sequent calculus, which was proven in [11] to induce the same B-consequence relation

as the one induced by the Σ-B-matrix ME . Define GE to be the B-sequent calculus whose

rules of inference are the following:

Structural rules

inS

𝜙
‖𝜙

in S
𝜙 ‖

𝜙

Φ N

ΦY
‖Φ Y

ΦN weak
Φ N,Ψ N

ΦY,ΨY
‖Φ Y,Ψ Y

ΦN,ΨN

Φ N

ΦY, 𝜙
‖Φ Y

ΦN

Φ N

ΦY
‖Φ Y, 𝜙

ΦN cutS
Φ N

ΦY
‖Φ Y

ΦN

Φ N

ΦY
‖ Φ Y

ΦN, 𝜙

Φ N, 𝜙

ΦY
‖Φ Y

ΦN cut S
Φ N

ΦY
‖Φ Y

ΦN

3We understand that G-systems have, in general, more complex formulations than the one we provide
informally here. The way we describe them, nevertheless, is enough to illustrate the differences with
respect to Hilbert-style systems in the next subsection.

35

Logical rules

Φ N

ΦY
‖ Φ Y

ΦN, 𝜙

Φ N

ΦY
‖ Φ Y

ΦN, 𝜓 L ∧ S
Φ N

ΦY
‖ Φ Y

ΦN, 𝜙 ∧ 𝜓

Φ N

ΦY
‖Φ Y, 𝜙

ΦN

Φ N

ΦY
‖Φ Y, 𝜓

ΦN R ∧S
Φ N

ΦY
‖Φ Y, 𝜙 ∧ 𝜓

ΦN

𝜙, 𝜓,Φ N

ΦY
‖Φ Y

ΦN R ∧ S
Φ N, 𝜙 ∧ 𝜓

ΦY
‖Φ Y

ΦN

Φ N

𝜙, 𝜓,ΦY
‖Φ Y

ΦN L ∧S
Φ N

𝜙 ∧ 𝜓,ΦY
‖Φ Y

ΦN

Φ N

𝜙,ΦY
‖Φ Y

ΦN

Φ N

𝜓,ΦY
‖Φ Y

ΦN L ∨S
Φ N

𝜙 ∨ 𝜓,ΦY
‖Φ Y

ΦN

𝜙,Φ N

ΦY
‖Φ Y

ΦN

𝜓,Φ N

ΦY
‖Φ Y

ΦN R ∨ S
𝜙 ∨ 𝜓,Φ N

ΦY
‖Φ Y

ΦN

Φ N

ΦY
‖Φ Y, 𝜙, 𝜓

ΦN R ∨S
Φ N

ΦY
‖Φ Y, 𝜙 ∨ 𝜓

ΦN

Φ N

ΦY
‖ Φ Y

ΦN, 𝜙, 𝜓 R ∨ S
Φ N

ΦY
‖ Φ Y

ΦN, 𝜙 ∨ 𝜓

Φ N

ΦY
‖Φ Y, 𝜙

ΦN R¬ S¬𝜙,Φ N

ΦY
‖Φ Y

ΦN

Φ N

ΦY
‖ Φ Y

ΦN, 𝜙 L¬S
Φ N

¬𝜙,ΦY
‖Φ Y

ΦN

𝜙,Φ N

ΦY
‖Φ Y

ΦN R¬S
Φ N

ΦY
‖¬𝜙,Φ

Y

ΦN

Φ N

𝜙,ΦY
‖Φ Y

ΦN L¬ S
Φ N

ΦY
‖ Φ Y

¬𝜙,ΦN

Derivations in G-systems are sequences or trees of sequents, the presence of each

sequent in the sequence being justified by an application of a rule of inference of the

system taking as inputs previous sequents in the sequence. When a sequent happens

to appear at the end of a derivation, we say that it is provable. We may also represent

proofs as trees that grow upwards and have the provable sequent at the root. The one-

dimensional Set-Fmla logic associated to a Set-Fmla G-system is the one according

36

to which 𝜓 follows from Φ whenever the sequent Φ � 𝜓 is provable in that system, and it

can be shown to be a substitution-invariant and finitary Set-Fmla consequence relation.

This extends to the Set-Set and Set2-Set2 cases in the expected way. Two well-known

deductive approaches when working with G-systems are the Natural Deduction and

the Gentzen Calculus approaches. In the former, on the one hand, rules are focused on

introducing and eliminating compound formulas on the right side of the sequents being

manipulated. The latter, on the other hand, does not privilege a specific side, focusing

on rules that introduce compound formulas either on the left or on the right.

Arguably the most distinguishing aspect of G-formalisms is that the rules

manipulate meta-linguistic objects (the sequents) representing inferences by themselves,

something that aggregates power to the formalism by allowing the manipulation of

contexts, as well as the mechanism of discharge of assumptions. With these resources, it

becomes easy to internalize in the calculus meta-properties of the corresponding logic.

For example, the following rules internalize the Deduction-Detachment Theorem, read as

Φ, 𝜙
t
𝜓 iff Φ

t
𝜙 ⊃ 𝜓, a well-known meta-property of intuitionistic and classical logic:

Φ, 𝜙 � 𝜓
Φ � 𝜙 ⊃ 𝜓

Φ � 𝜙 Ψ � 𝜙 ⊃ 𝜓

Φ,Ψ � 𝜓

Such power, however, does not come for free: the price is a distancing of the form of the

rules from the associated notions of logic, posing difficulties for some important investi-

gations, like those concerning the correspondence between merging different deductive

systems and combining their underlying logics. A way of realizing what we mean is by

noticing that rules in G-systems do not correspond to statements of the logic they induce,

that is, they do not consist simply of formulas or sets of formulas grouped in a tuple,

they are more complex than that.

37

2.5.2. H-formalisms

While rules in G-formalisms manipulate meta-linguistic objects representing

inferences by themselves, what we call H-formalisms (‘H’ is for ‘Hilbert’) provide deductive

systems as logical bases, in the sense that the instances of the rules of inference are

elements of the induced logics, and these very logics are the least logics closed under

such rule instances. In other words, the type of the relation that represents the logics

determines the shape of the rule instances.

For instance, since one-dimensional logics are relations ⊆ Pow(LΣ(P))×LΣ(P)

(in Set-Fmla) or �⊆ Pow(LΣ(P)) × Pow(LΣ(P)) (in Set-Set), rule instances are

expected to be, respectively, pairs (Φ, 𝜓) or (Φ,Ψ), where the first component is the

antecedent and the second, the succedent of the rule instance. Noticeably, these are simpler

than the rule instances of G-formalisms, as they do not allow for the manipulation of

contexts and the discharge of assumptions. Rules of inference are again usually presented

schematically, and they are graphically represented with a horizontal bar, placing the

antecedent at the top, and the succedent at the bottom:

Φ

𝜓

Φ

Ψ

Traditionally, Hilbert deductive systems have been associated to a specific H-

formalism, which we will call Set-Fmla H-formalism. The associated deductive systems

will be called Set-Fmla H-systems. Rule instances, in this case, have the shape we have

shown above (in Set-Fmla), and derivations (we shall call them Set-Fmla derivations)

are finite sequences of formulas, where each formula in the sequence is either a premise or

appears in the succedent of a rule instance whose antecedent formulas appear previously

in the sequence. We say, in other words, that each (non-premise) formula derives or

results from an application of a rule to previously derived formulas. Provided we have

an account of the rules applied to produce each formula in a derivation, we may prefer

38

to rewrite it as a tree instead of a sequence of formulas, where the conclusion appears

in the root and premises appear in the leaves. Given a Set-Fmla H-system ℋ, we let

Φ ℋ 𝜓 if, and only if, there is a Set-Fmla derivation ending in 𝜓, using only the rules

of ℋ and premises in Φ. The relation ℋ so defined can be easily proved to be a finitary

and substitution-invariant4 Set-Fmla consequence relation.

We should emphasize here that Set-Fmla H-systems (and H-formalisms in

general) are committed neither to specific connectives (like implication) and rules of

inference (like Modus Ponens), nor to having many axioms and few rules of inference,

as some texts might make us believe [48]. If this were true, a quick inspection of the

well-known Post’s lattice [53, 33] would seem to show that there is an infinite number of

2-valued theoremless logics that would allegedly not be capturable by H-systems. The

situation would of course be even worse if we considered many-valued logics such as

Kleene’s K3 or Dunn-Belnap’s FDE, which also do not have theorems — and thus, no

axioms — and no implication either.

Example 24. An H-system for Dunn-Belnap’s FDE in Set-Fmla is given by the

following rule schemas [26]:

p ∧ q
p

p ∧ q
q

p, q
p ∧ q

p
p ∨ q

p ∨ q
q ∨ p

p ∨ p
p

p ∨ (q ∨ r)

(p ∨ q) ∨ r
p ∨ (q ∧ r)

(p ∨ q) ∧ (p ∨ r)

(p ∨ q) ∧ (p ∨ r)

p ∨ (q ∧ r)

p ∨ r
¬¬p ∨ r

¬¬p ∨ r
p ∨ r

¬(p ∨ q) ∨ r
(¬p ∧ ¬q) ∨ r

(¬p ∧ ¬q) ∨ r
¬(p ∨ q) ∨ r

¬(p ∧ q) ∨ r
(¬p ∨ ¬q) ∨ r

(¬p ∨ ¬q) ∨ r
¬(p ∧ q) ∨ r

We may agree, however, with the general claim stating that Set-Fmla H-systems

4Assuming the system is schematic, namely, that each of its rule instances is a substitution instance of
a representative statement, called rule schema.

39

are commonly impractical, difficult mechanisms, both during system design and during

the production of derivations. The unavailability of modularity (a clear account of the

effect of each rule over a given semantics) and analyticity results for these systems often

demands non-intuitive or clever choices of rule instances to apply in derivations, and

makes the automation of reasoning hard to achieve. As we will see in Chapter 3, in

view of recent developments on Set-Set H-systems, this claim cannot be extended to

H-formalisms in general.

2.5.3. Signed formalisms

As we know from Section 2.3.4, there are other notions of (one-dimensional)

logics that do not satisfy the usual properties of reflexivity and transitivity, namely

q-consequences and p-consequences. Deductive formalisms for them have scarcely been

developed at all in the literature, a lack that we will attempt to fill with our very inclusive

two-dimensional formalism to be presented in the next chapter.

We briefly comment now on a proof formalism associated to p-consequences,

introduced by Frankowski in [29]. Rules of inference are called p-rules of inference, and

their instances, called p-inferences, manipulate pairs from the product LΣ(P)× {+, *},

which we call signed formulas. The antecedent of a p-inference is a set of signed formulas,

and the succedent is a single signed formula. We will denote a signed formula (𝜙, s)

by 𝜙s, where s ∈ {+, *}, approximating thus this formalism to those used for signed

consequences in the context of bilateralist (one-dimensional) logics [54, 23]. The intuition

behind signed formulas is that the sign + indicates that the formula is well justified,

while * indicates that it is plausible only. As expected, a p-calculus R is a collection

of p-rules of inference. A p-derivation with set of premises Φ in R, then, is similar to

those in the Set-Fmla H-formalism, but with signed formulas and a special way of

incorporating premises: it is a sequence 𝜙s1
1 , . . . , 𝜙

sk
k of signed formulas where each 𝜙si

i

40

is such that either 𝜙i ∈ Φ and si = + or there is an instance of a rule of inference

of R whose antecedent is included in the set of previous formulas in the sequence and

the succedent is 𝜙si
i . A p-proof of 𝜙s from Φ in R is a p-derivation whose last signed

formula is 𝜙s. In order to connect this formalism with the p-consequence relation (whose

statements involve formulas, not signed formulas), we say that 𝜙 is provable from Φ in

R when there is a p-proof of 𝜙+ or 𝜙* from Φ. This formalism does not fit in the class

of G-formalisms or H-formalisms with respect to p-consequences, as we have presented,

since rules does not manipulate inferences and the calculus does not form a logical basis

of the p-consequence relation. In the next chapter, however, we will see an H-formalism

where signals may be translated to positions in a two-dimensional structure.

41

3. Symmetrical H-systems

As mentioned in Section 2.5.2, when we pass from Set-Fmla H-systems to Set-

Set H-systems, the first notable difference is that succedents of rule instances become sets

of formulas (including the empty set), instead of a single formula. This correspondence

between the objects that constitute antecedents and succedents characterizes what we

call symmetrical H-systems. The other difference one might expect in this passage is

with respect to the derivations; in particular, how is a derivation affected by the multiple

formulas in the succedent of an applied rule instance, and how do we know that we

have obtained a proof of a Set-Set statement of interest? The answer to this, coming

originally from [57], is that derivations become labelled rooted trees, where an application

of a rule instance produces as many branches as formulas in the succedent.

The goal of this chapter is to present the Set-Set H-formalism, and, more

importantly, to show that we can generalize its inner workings to produce symmetrical

H-formalisms over other frameworks; in particular, over the Set2-Set2 framework, which

will occupy us in the whole Chapter 4.

3.1. Derivations as rooted labelled trees

The structures called rooted labelled trees (or trees, for short) will be extensively

used in the representation of derivations and proofs in the so-called Set-Set and Set2-

Set2 H-formalisms, which are presented, respectively, in Section 3.2 and Chapter 4. Our

42

purpose now is to give a general formal account of them in order to abbreviate some

proofs in other parts of this work, as well as to show how derivations based on such trees

might be adapted to manipulate more complex objects.

Before proceeding, let us introduce some notions from universal algebra and

order theory. A partially ordered set (poset) is said to be complete when it has a least

element and each of its chains has a supremum. Let L be a lattice with least element

⊥L and denote by ≤L its underlying partial order. We say that L is complete whenever

it is complete when seen as a poset. An element a of L is called an atom when there

is no element in between ⊥L and a with respect to ≤L. When every element of L is

the supremum of a collection of atoms, then L is said to be atomistic. For a complete

introduction to lattice theory, see [8].

Throughout this section, let ℒ :=
⟨︀
L, ·cℒ,⊔ℒ,⊓ℒ,⊤ℒ,⊥ℒ

⟩︀
be a complete atomistic

(we will use this property specially in the proof of Proposition 43) Boolean algebra, with

underlying complete partial order denoted by ≤ℒ. Note that we denote by ·cℒ the

complement operation in ℒ. Given Y ⊆ L a chain with respect to ≤ℒ, we denote the

supremum of Y by
⨆︀

Y . This structure is said to be a node labels algebra, and is intended

to provide the information carried out by the nodes of a tree. Also, let * be an special

symbol (not in L), called the discontinuation symbol. Moreover, call the elements in L×L

expansors over ℒ, and fix a nonempty collection E of such elements. They are intended

to represent ways of expanding trees during derivations, producing new branches with

new pieces of information. We will usually write an expansor e := (l, l ′) ∈ E as

l
l ′ .

Our intention is that the rule instances of a symmetrical H-system be particular cases

of expansors. In view of that, as one would expect, we call l the antecedent and l ′ the

succedent of e. The new information introduced by an application of an expansor will be

43

determined by a function exp : L → (Pow(L) ∪ {*}), such that exp(⊥ℒ) = * and, for all

l ̸= ⊥ℒ, exp(l) is a collection of atoms of ℒ and
⨆︀

exp(l) = l. Clearly, exp(l) ̸= * for all

l ̸= ⊥ℒ. The output of this function when taking a label, thus, is either a discontinuation

symbol or a set of labels. As we will detail in a moment, each of these labels will

correspond to a new branch in the derivation where the expansor is applied, and each

of these branches will contain all the information produced up to the application of the

expansor, plus the information carried by the corresponding label.

Last but not least, we associate to ℒ a binary predicate on L denoted by match

such that l match l ′ if, and only if, l ⊓ℒ l ′ ̸= ⊥ℒ. Notice that this predicate is monotonic

on the second argument with respect to the order ≤ℒ, and reflexive on labels different

from ⊥ℒ. Furthermore, note that, whenever l match l ′, it follows that exp(l ′) ̸= * and

that there is s ∈ exp(l ′) for which l ⊔ℒ s = l. Intuitively, l and l ′ must carry some piece

of information in common in order to match. We sometimes refer to match as the closure

predicate.

Example 25. Let X be a set and consider the node labels algebras of the following form:

1. ℒX
1D := ⟨Pow(X),X∖·,∪,∩,X ,∅⟩, where the underlying partial order is ⊆.

2. ℒX
2D :=

⟨
Pow(X)2, ·cℒX

2D ,⊔ℒX
2D
,⊓ℒX

2D
, (X ,X), (∅,∅)

⟩
, with (Y ,Z)cℒX

2D := (X∖Y ,X∖Z),

and with (Y ,Z) ⊔ℒX
2D

(Y ′,Z ′) := (Y ∪ Y ′,Z ∪ Z ′) and (Y ,Z) ⊓ℒX
2D

(Y ′,Z ′) :=

(Y ∩ Y ′,Z ∩ Z ′) , for all Y ,Y ′,Z ,Z ′ ⊆ X. The underlying partial order, which we

also denote by ⊆, is such that (Y ,Z) ⊆ (Y ′,Z ′) if, and only if, Y ⊆ Y ′ and Z ⊆ Z ′.

We will usually take X to be LΣ(P), in which case we omit the superscript in the notation

above, thus simply writing ℒ1D and ℒ2D. In this way, in the first case, the information

carried out by a tree is a set of formulas, intended to represent the formulas derived when

we build one-dimensional proofs. The second definition is similar, but will be employed

in two-dimensional derivations, in which the information is a collection of formulas for

each one of the two dimensions, represented by a pair of sets of formulas. Regarding the

44

closure predicates, we have the following for the above examples, respectively:

1. Y matchZ if, and only if, Y ∩ Z ̸= ∅.

2. (Y ,Z) match (Y ′,Z ′) if, and only if, Y ∩ Y ′ ̸= ∅ or Z ∩ Z ′ ̸= ∅.

In what follows, we omit curly braces to simplify the notation. Here are some examples

of expansors over ℒ1D:
𝜙 ∨ 𝜓
𝜙, 𝜓

𝜙→ 𝜓, 𝜙

𝜓

𝜙,¬𝜙
∅

And here are some examples of expansors over ℒ2D:

({𝜙 ∧ 𝜓},∅)

({𝜙},∅)

({𝜙}, {𝜓})
(∅, {𝜙→ 𝜓})

({𝜙→ 𝜓},∅)

({𝜙}, {𝜓})
({𝜙}, {𝜙})

(∅,∅)

Finally, we define the expansion functions for each of the above examples, respectively,

as:

• exp(l) :=

⎧⎪⎪⎨⎪⎪⎩
* if l = ∅

{{x} | x ∈ l} otherwise

• exp(l) :=

⎧⎪⎪⎨⎪⎪⎩
* if l = (∅,∅)

{(y,∅) | y ∈ Y } ∪ {(∅, z) | z ∈ Z} otherwise, with l = (Y ,Z)

We proceed now by defining the structures called rooted trees, which at first

will not carry any information. We will then associate labels from ℒ to the nodes of

these trees (yielding labelled rooted trees). This will allow us to talk about deriving a

piece of information from another given piece of information via the construction of an

appropriate rooted labelled tree using the available expansors.

Definition 26. A rooted tree t is a poset ⟨nds(t),⪯t⟩ such that, for all nodes n ∈ nds(t),

the set actrst(n) := {n′ ∈ nds(t) | n′ ≺t n} of ancestors of n is well-ordered under ≺t

and there is a single minimal element of ⪯t, called the root of t and denoted by rt(t). A

branch of t is a maximal chain of ⪯t. When every branch of t has a maximal element, t

45

is said to be bounded. Such maximal elements are called the leaves of t. See Figure 3.1

for some illustrations.

Given n ∈ nds(t), the height of n in t is defined as the order type of actrst(n),

that is, the ordinal (see [38] for details on the theory of ordinal numbers) isomorphic to

actrst(n). The height of t itself is the least ordinal greater than the height of each of the

nodes of t. The length of a branch of t is its order type, being denoted by lent(b). Given

an ordinal 𝛼, the set of all nodes of t of height 𝛼 is the 𝛼-level of t. The supremum of

the cardinalities of the levels of t is the width of t. We will not impose any constraints

on the height and on the width of rooted trees, so they can grow infinitely in both

dimensions. Moreover, the immediate predecessor of n, when it exists, is called the parent

of n; the set of descendants of n is dctst(n) := {n′ ∈ nds(t) | n ≤t n′}, the immediate

descentants of n are the children of n, and the set siblt(n) of siblings of n is the set

{n′ ∈ nds(t) | actrst(n′) = actrst(n)}. Note that we consider a node to be a sibling of

itself. In finite trees, the set of siblings is the same as the set of nodes that share the same

parent with n. On the other hand, when we allow the set of ancestors of n to be infinite,

there may be no parent node of n, so we need to consider the whole set of ancestors of n

to identify its siblings. We may also refer to actrst(n) as the path to n in t.

Definition 27. A rooted tree t together with a mapping ℓt : nds(t)→ L ∪ {*} is said to

be labelled by ℓt or a labelled rooted tree for short.

Definition 28. Given n ∈ nds(t), we let subt(n) :=
⟨︀
dctst(n),≤t ∩ (dctst(n)× dctst(n))

⟩︀
be the subtree1 of t rooted at n. When t is labelled, we let ℓsubt(n) be the restriction of ℓt

to dctst(n).

It will be useful for us sometimes to replace a subtree in a given tree t by another

one (see Figure 3.3 for an illustration). When the subtree to be replaced has only the root

1We consider here a subtree as an upward closed set, as opposed to some definitions in the set-theoretic
literature, where the dual notion — using downward closed sets — is employed.

46

(a) n0 (b) n0

n1

n2

(c) n0

n1

n4n3n2

n5

(d) n0

n1

· · ·· · ·

(e) n0

n1

n2

n3

...

(f) n0

n1

n2

n3

...

n𝜔

Figure 3.1.: Examples of rooted trees, all with root n0. In (a), we see a tree with a single
node, whose height is 0. In (b), we see a tree with three nodes and a single
branch. Its height is 2 and n2 is the only leaf node. In (c), we see again a tree
with height 2, but now having four branches. The leaves in (c) are n2, n3, n4

and n5. The three latter trees are finite and bounded. The trees (d), (e) and
(f) are infinite. In the case of (d), the node n1 has infinitely many children
(equivalently, each of its children has infinitely many siblings), and every
branch is finite, thus the tree is bounded. The tree, in this case, has infinite
width. In (e), there is an infinite branch, and the tree is unbounded. The
height of each of its nodes is finite, but the height of the tree is 𝜔. Finally,
in (f), we have a bounded tree having a branch with infinitely many nodes.
The height of n𝜔 is 𝜔, while the height of the tree is 𝜔 + 1.

node, this operation can be seen as a way of expanding t by “gluing” another tree at the

end of one of its branches. This construction will be specially useful for Proposition 39

on page 52.

Definition 29. Let t, t ′ be labelled rooted trees whose sets of nodes are disjoint, and n

be a node of t. We denote by t(n, t ′) the labelled rooted tree resulting from t by replacing

the subtree subt(n) with t ′.

We may also need to delete from a tree all the subtrees rooted at the siblings of

47

(a) 𝜙 n0 (b) 𝜙 n0

𝜙, 𝜙 ∨ 𝜓 n1

𝜙, 𝜙 ∨ 𝜓,⊤ n2

(c) 𝛾 n0

𝜙 ∨ 𝛾 n1

𝛾 ∨ 𝛿 n4* n3𝛿, 𝛿 ∧ 𝜃 n2

𝜙, 𝛾 n5

Figure 3.2.: Here are labelled versions of the trees (a), (b) and (c) in Figure 3.1. The
node labels algebra is assumed to be ℒ1D, so that the labels are either
sets of formulas (we omit curly braces to simplify the notation) or the
discontinuation symbol. In (c), the subtree rooted at n1 is highlighted in
blue.

t 𝛾 n0

𝜙 ∨ 𝛾 n1

𝛾 ∨ 𝛿 n4* n3𝛿, 𝛿 ∧ 𝜃 n2

𝜙, 𝛾 n5

t ′ 𝛿 → 𝜙 n6

𝜙, 𝛾 n7

𝜙 ∨ 𝛾 n9𝜙 ∧ 𝛾 n8

t(n1, t ′) 𝛾 n0

𝛿 → 𝜙 n6

𝜙, 𝛾 n7

𝜙 ∨ 𝛾 n9𝜙 ∧ 𝛾 n8

𝜙, 𝛾 n5

Figure 3.3.: Replacement of a subtree of t rooted at n1 (in blue) by another tree t ′ (in
red), yielding a new tree t(n1, t ′).

a given node, as described below.

Definition 30. Given a labelled rooted tree t and a node n of t, we denote by t ⊖ n the

labelled rooted tree resulting from t by deleting the subtrees subt(n′) for all n′ ∈ siblt(n)2.

See Figure 3.4 for an illustration.

Definition 31. Let t be a labelled rooted tree, b be a branch of t and {ti}i∈I be a family

of labelled rooted trees whose sets of nodes are pairwise disjoint and also disjoint with

respect to the set of nodes of t. Denote by t(b, {ti}i∈I) the tree whose set of nodes is

2Recall that this includes subt(n).

48

t n0

n1

n2

n3

...

m3m2m1

t ⊖m1 n0

n1

n2

n3

...

Figure 3.4.: Here, nodes m1, m2 and m3 have height 𝜔. Notice that this operation resulted
in a tree which is not bounded, even though t was.

nds(t)∪
⋃︀

i∈I nds(ti), the underlying order is as in t but with the nodes of
⋃︀

i∈I nds(ti) all

descending from the notes in b, and the labelling is the juxtaposition of the labelling of

the trees t and ti for each i ∈ I (which constitutes a function because the sets of nodes

are disjoint).

In what follows, let limt(n) =
⨆︀
{ℓt(n′) | n′ ∈ actrst(n)}, which exists since the

poset associated to ℒ is complete. We are interested now in the situations where we may

derive a certain informational content (represented by a label) from another given one,

by means of the available expansors. We first provide the definition of a derivation in E ,

which basically describes the labelled rooted trees built by the expansors in E , and then

define what a proof in E means.

Definition 32. A derivation in a collection E of expansors is a bounded labelled rooted

tree t whose root is not labelled with * and in which, for every nonroot node n of t, there

is an expansor (l, l ′) ∈ E such that l ≤ℒ limt(n) and either

• exp(l ′) = *, siblt(n) = {n}, ℓt(n) = * and n is a leaf; or

• exp(l ′) = S ̸= *, |siblt(n)| = |S |, and, to each m ∈ S, there corresponds a node

n′ ∈ siblt(n) such that ℓt(n′) = limt(n) ⊔ℒ m. We say that such expansor was applied

49

to actrst(n), expanding it and producing siblt(n). If the produced nodes have a parent

node, we say, more simply, that e expands such node.

The set of all derivations in E (over ℒ) is denoted by Der(ℒ,E).

In a derivation t, then, every nonroot node n has its presence justified by an

application of an appropriate expansor to the path to n in t. This application produces

not only n, but all of its siblings. Equivalently, it produces new branches, one for each

sibling of n. The amount of such branches, as well as the labels of the produced siblings,

are determined by the expansion function exp and the succedent of the applied expansor.

Nodes labelled with * are always leaves; the branches in which they are located are said

to be discontinued. We may call these very nodes discontinued too. To each branch in a

derivation there corresponds a chain of expansors that justify the presence of each node

in the branch. We say that each of these expansors were applied in the branch.

Definition 33. Let l, l ′ ∈ L. A proof t of (l, l ′) in E is a derivation in E such that

• ℓt(rt(t)) ≤ℒ l; and

• for every leaf n of t, we have either ℓt(n) = * or ℓt(n) match l ′.

We write l ⊢E l ′ whenever there is a proof in E of (l, l ′), and say that (l, l ′) is derivable

in E.

Note that, given a proof t of (l, l ′) in E and a nonleaf node n of t produced by an

expansor e with succedent m, the subtree of t rooted at n is a proof of (limt(n) ⊔ℒ s, l ′),

for a label s ∈ exp(m).

An application of an expansor may produce new branches with no new infor-

mation. When this happens in a proof, we will show that such an application can be

avoided without harm. One of the consequences of this fact is that we will never need to

apply an expansor twice on the same branch in order to provide a proof in E .

Definition 34. Let t be a proof of (l, l ′) in E. If, for some nonleaf node n, siblt(n) was

produced by an expansor e ∈ E such that limt(n) = ℓt(n), then this application of e is

50

said to be irrelevant. A proof without irrelevant applications of expansors is said to be

concise.

Proposition 35. l ⊢E l ′ if, and only if, there is a concise proof of (l, l ′) in E.

Proof. Let t be a proof of (l, l ′) in E . The right-to-left direction is obvious. For the

converse, we prove that every irrelevant application of an expansor in t may be removed.

Suppose that a nonleaf node n of t was produced by an application of e := (m,m′) ∈ E

and that (a): limt(n) = ℓt(n). Since n is a nonleaf node, its children were produced by

an application of an expansor e′ ∈ E . But e′ could have been used instead of e, given

(a). Since t is a proof of (l, l ′) in E , replacing the application of e by the application

of e′ results in a tree which is still a proof of (l, l ′) in E . By repeating this process for

each irrelevant application of expansors in t, we will end up with a concise proof of (l, l ′)

in E .

Corollary 36. It is not necessary to apply the same expansor twice in a branch of a

proof.

Proof. A second application of an expansor in a branch could either produce at least one

nonleaf node or only leaf nodes. In the first case, this would be an irrelevant application,

and thus could be removed in view of Proposition 35. If only leaf nodes were produced,

then we could have used only the first application of the expansor without any loss.

Whenever we show that (l, l ′) is provable in E , we are able to use (l, l ′) as an

expansor without incurring the risk of proving more than what we could prove before.

Proposition 39 below formalizes and prove this observation, which will be useful specially

in proving Proposition 43 on page 54.

Definition 37. An expansor (l, l ′) is said to be derivable in E provided l ⊢E l ′.

Definition 38. Given a labelled rooted tree t and a label l, let t⊕ l be the tree that differs

from t only in the labelling: ℓt⊕l(n) := ℓt(n) ⊔ℒ l, for all n ∈ nds(t).

51

Proposition 39. If the expansor e = (l, l ′) is derivable in E, then ⊢E = ⊢E∪{e}.

Proof. The left-to-right direction is obvious. For the converse, suppose that m ⊢E∪{e} m′,

witnessed by a derivation t, which, without loss of generality, we assume to be concise.

Let te be a concise proof of e in E , and assume without loss of generality that it has more

than one node, that the label of its root is l and that nds(t) ∩ nds(te) = ∅. We want to

show that applications of e in t may be replaced by applications of expansors in E .

Assume that (a): e was applied to actrst(n). Then (b): l ≤ℒ limt(n), and, for

each s ∈ exp(l ′), there is a derivation te
s witnessing that limt(n) ⊔ℒ s ⊢E∪{e} m′. Since t is

concise, we have that such derivations actually bear witness to limt(n) ⊔ℒ s ⊢E m′.

Let e′ = (s, s′) be the expansor applied to the root node of te. Then s ≤ℒ l, and,

for each k ∈ exp(s′), a node is produced with label l ⊔ℒ k, being the root of a subtree tk of

te that is a proof of l ⊔ℒ k ⊢E l ′. Consider the tree t*k := tk ⊕ limt(n) (recall Definition 38).

In this way, the root of each t*k is limt(n)⊔ℒ k (in view of (b)). For each k ∈ exp(s′), then,

t*k is a proof of limt(n) ⊔ℒ k ⊢E l ′.

Let t ′ := t ⊖ n (recall Definition 30), and t ′′ := t ′(actrst(n), {t*k}k∈exp(s′)) (recall

Definition 31). The resulting tree is a derivation in E , but still not a proof of (m,m′). The

new leaf nodes n′ not labelled with * possibly present in t ′′ are such that ℓt′(n′) match l ′.

Thus, there is r ∈ exp(l ′), such that ℓt′(n′) ⊔ℒ r = ℓt′(n′). Consider the tree te
r ⊕ ℓt′(n′),

and note that its root has label ℓt′(n′) — since limt(n) ≤ℒ ℓt′(n′). Thus we may use it

instead of the leaf n′, via the operation described in Definition 29. Doing this for every

such leaf n′, we finish the proof.

We work now on a process for building, or searching for, a proof in E of a given

(l ′, l). It basically consists in selecting and expanding the branches of a given tree via the

available expansors, until the desired derivation is achieved or no (relevant) application

of an expansor is possible.

Definition 40. Let t be a labelled rooted tree and b be a branch of t. The label of b,

52

denoted by ℓt(b), is defined as
⨆︀
{ℓt(n) | n ∈ b}. We say that an expansor (l, l ′) ∈ E

relevantly applies to b in case

1. l ≤ℒ ℓt(b); and

2. ℓt(b) <ℒ m ⊔ℒ ℓt(b), for each m ∈ exp(l ′), in case exp(l ′) ̸= *.

When there is such an expansor, b is said to be amenable to a relevant expansion in E.

Definition 41. Let t be a rooted labelled tree, b be a branch of t and e := (l, l ′) ∈ E be

an expansor that relevantly applies to b. Set S := exp(l ′) and define ∆(S) to be a set of

nodes not in nds(t) such that

∆(S) :=

⎧⎪⎪⎨⎪⎪⎩
{nm | m ∈ S}, if S ̸= *

{n*}, otherwise

We define the expansion of t on b by e as the rooted labelled tree t↓b
e such that:

• nds(t↓b
e) := nds(t) ∪∆(S)

• ⪯t↓b
e := ⪯t ∪ {(n′, n) | n ∈ ∆(S), n′ ∈ b}

• ℓt↓b
e(n) := ℓt(n) for all n ∈ nds(t)

• ℓt↓b
e(ns) := ℓt(b) ⊔ℒ s for all ns ∈ ∆(S), if ∆(S) ̸= {n*}

• ℓt↓b
e(ns) := * if ∆(S) = {n*}

Given a labelled rooted tree t, we fix an order on the collection Bt of its branches

amenable to a relevant expansion. Also, given a branch b of t, we fix an order on the

set of expansors relevantly applicable to b, and let Eb be a partial function that is

undefined if no expansor is relevantly applicable to b or produces the first expansor

applicable to b according to the fixed order. Let T (n, l) be the set of all derivations

whose root is n labelled with l. The tree in this set with a single node is denoted by

t⊥. Moreover, whenever g : B → B is a function on a complete partially ordered set B,

we let, for all x ∈ B, g0(x) := x, g𝛼+1(x) := g(g𝛼(x)) for sucessor ordinals 𝛼 + 1, and

53

g𝜆(x) =
⨆︀
𝛼<𝜆 g𝛼(x) for limit ordinals 𝜆.

Definition 42. Given l, l ′ ∈ L, we define the mapping fl,l′ on T (n, l) such that:

• fl,l′(t) = t, if t is a proof of (l, l ′) in E or, for each branch b ∈ Bt, Eb is undefined;

otherwise,

• fl,l′(t) = t↓b
e, where b is the first branch of t amenable to a relevant expansion and e

is Eb.

Also, let Tl′(n, l) := {t ∈ T (n, l) | t = f 𝛼l,l′(t⊥), for some ordinal 𝛼} — namely, the set

of all derivations achievable from t⊥ via consecutive applications of fl,l′.

Notice that the relation ≤l′ on Tl′(n, l) such that t1 ≤l′ t2 iff t2 = f 𝛼l,l′(t1) for

some ordinal 𝛼 is a complete partial order with least element t⊥. The supremum of a

chain Y over this order is the tree
⨆︀

Y :=
⟨︀⋃︀

t∈Y nds(t),
⋃︀

t∈Y ≤t⟩︀ labelled by
⋃︀

t∈Y ℓ
t.

Moreover, fl,l′ is monotonic with respect to ≤l′ .

We work now to prove some properties satisfied by the derivability relation ⊢E .

The reader will notice that, provided appropriate instantiations of the node labels algebra

(ℒ1D and ℒ2D, respectively), they will correspond to properties of Set-Set consequence

relations and B-consequence relations.

Proposition 43. For all l, l ′,m,m′ ∈ L,

(Ot) l ⊢E l ′ whenever l match l ′.

(Dt) if l ⊢E l ′, then l ⊔ℒ m ⊢E l ′ ⊔ℒ m′

(Ct) if for all s ∈ L such that l ≤ℒ s and l ′ ≤ℒ scℒ we have l ⊔ℒ s ⊢E l ′ ⊔ℒ scℒ,

then l ⊢E l ′.

Moreover, ⊢E is the least relation containing all expansors in E and satisfying the above

properties.

Proof. For (Ot), assume that l match l ′ and consider a tree with a single node labelled

with l* := l ⊓ℒ l ′. Then clearly l* ≤ℒ l and l* match l ′. For (Dt), suppose that t bears

54

witness to l ⊢E l ′. Then t itself bears witness to l ⊔ℒ m ⊢E l ′ ⊔ℒ m′, since ℓt(rt(t)) ≤t l,

l ≤t l ⊔ℒ m, and ≤t is transitive; in addition to the fact that match is monotonic on the

second argument with respect to the order ≤ℒ.

For (Ct), we first assume without loss of generality that we do not have l match l ′.

Suppose that for all s ∈ L such that l ≤ℒ s and l ′ ≤ℒ scℒ we have l ⊔ℒ s ⊢E l ′ ⊔ℒ scℒ.

Recall, in view of Proposition 39, that (a): for all s ∈ L such that l ≤ℒ s and l ′ ≤ℒ scℒ,

we are allowed to use (s, scℒ) as an expansor in derivations. Since fl,l′ is monotonic with

respect to ≤l′ , and since ≤l′ is complete, fl,l′ has a least fixed point, given by f 𝛼l,l′(t⊥), for

some ordinal 𝛼. By the definition of fl,l′ , we have two possibilities: either this tree is a

proof of (l, l ′) or some of its branches are not amenable to a relevant expansion. The

latter, however, cannot happen, in view of (a), and we are done.

We prove now that the derivability relation is the least relation satisfying those

three properties. Given a concise derivation t, let lt := ℓt(rt(t)) and, for every leaf n of a

nondiscontinued branch b of t, let mn be ℓt(n)∖limt(n) (which must be an atom, given the

definition of exp), and l ′t be the supremum of all mn. Then t is a proof of (lt , l ′t) in E . It

turns out that, for all l, l ′ ∈ L, l ⊢E l ′ if, and only if, lt ≤t l and l ′t ≤t l ′ for some derivation

t in E . The right to left direction is easy, given (Dt). For the converse direction, let t be

a concise proof of (l, l ′) in E . Then lt = ℓt(rt(t)) ≤t l. Also, let n be a leaf node of t not

labelled with *, and let sn := ℓt(n) ⊓ℒ l ′ ̸= ⊥ℒ. Assume without loss of generality that

limt(n) ⊓ℒ l ′ = ⊥ℒ. Then sn = (limt(n) ⊔ℒ mn) ⊓ℒ l ′ = (limt(n) ⊓ℒ l ′) ⊔ℒ (mn ⊓ℒ l ′) ̸= ⊥ℒ,

thus sn = mn ⊓ℒ l ′, and sn ≤t mn, but mn is an atom, so sn = mn. Therefore, mn ≤t l ′,

for each n, thus l ′t ≤t l ′, as desired. In this way, if l ⊢E l ′, and we prove that lt ⊢ l ′t , for a

derivation t with lt ≤ l and l ′t ≤ l ′, we obtain l ⊢E l ′ by (Dt). In other words, we just

need to prove, for all derivations t, that lt ⊢E l ′t .

Given a derivation t, a branch b of t and an ordinal h, let t[b, h] denote the tree

resulting from t by removing all descendants of the node nh of height h in b, except for

55

the node nh itself. Note that, since t is bounded, so is t[b, h]. Let ⊢ be a binary relation

on L containing the expansors in E and satisfying (Ot), (Dt) and (Ct). Assume that

lt ⊢E lt′ . We proceed to prove by induction on 0 ≤ h ≤ lent(b) that P(h): lt[b,h] ⊢ l ′t[b,h]. In

particular, when h = lent(b), t[b, h] = t, and we will have lt ⊢ l ′t, as desired. For h = 0,

t[b, 0] has only the root of t, so lt[b,0] = l ′t[b,0]. Thus, by (Ot) we have lt[b,0] ⊢ l ′t[b,0]. Assume

that (IH): P(j) holds for all 1 ≤ j < i, with i ≥ 1, and that the expansor (k, k ′) produced

ni (a node with height i in t). Note that k ′ ≤ℒ l ′t[b,i]. Our intention now is to use (Ct)

to prove lt = lt[b,i] ⊢ l ′t[b,i]. Let s ∈ L and suppose that lt[b,i] ≤ℒ s and l ′t[b,i] ≤ℒ scℒ . We

consider two cases:

1. there is a node nu (u < i) in actrst(ni) such that (a): mu ≤ℒ scℒ. We have then, by (IH),

lt[b,u] ⊢ l ′t[b,u]. Notice that all the other leaf nodes descending from nu were removed,

but the other leaf nodes are still in t[b, u]. In this way, l ′t[b,u]∖mu ≤ℒ l ′t[b,i] ≤ℒ scℒ. Then

l ′t[b,u] = l ′t[b,u]∖mu ⊔ℒ mu ≤ℒ scℒ ⊔ℒ mu = scℒ (by (a) and the fact that mu ≤ℒ lt[b,u]).

Since lt[b,u] = lt ≤ℒ s, by (b) we get s ⊢ scℒ.

2. for all nu in actrst(ni), mu ≤ℒ s. Then lt ⊔ℒ
⨆︀

nu∈actrst(ni)
mu = limt(ni) ≤ℒ s. But

k ≤ℒ limt(ni), thus k ≤ℒ s. As clearly k ′ ≤ scℒ, and k ⊢ k ′, we have by (Dt) s ⊢ scℒ,

as desired.

Therefore, for all s ∈ L such that lt = lt[b,i] ≤ℒ s and l ′t[b,i] ≤ℒ scℒ, we have s ⊢ scℒ. Then,

by (Ct), we have lt[b,i] ⊢ l ′t[b,i], and we are done.

3.2. Symmetrical H-systems for one-dimensional

consequence relations

The Set-Set H-formalism was first developed by [57] and applied recently

by [17, 43] in the axiomatization of logical matrices, including those that are partial

non-deterministic. In contrast to the Set-Fmla H-formalism explained above, rules have

56

sets as succedents, instead of a single formula, and derivations are bounded rooted trees

labelled with sets of formulas instead of being just sequences of formulas. In other words,

using the terminology of Section 3.1, derivations are bounded labelled rooted trees over

the node labels algebra ℒ1D, as described in Example 25. Most of what comes in the

remainder of this section, in fact, introduces names that are closer to the ones found in

the literature in Set-Set calculi for the objects and notions introduced in Section 3.1.

Consequently, all results proved there hold in this particular context.

Definition 44. A Set-Set rule of inference R is a collection of Set-Set statements

(Γ,∆), called the rule instances of R, where Γ is the antecedent and ∆ is the succedent

of the rule instance. A Set-Set system R is a collection of Set-Set rules of inference.

We denote by Inst(R) the union of all rules of inference of R, that is, all the rule instances

of R. A Set-Set rule of inference is schematic when it is the collection of all substitution

instances of a representative Set-Set statement s, the schema of that very rule. We

denote such a rule by Rs. A Set-Set system is schematic when all of its rules of inference

are schematic.

Clearly, Set-Set rule instances correspond to expansors over ℒ1D, as defined

in Section 3.1. Schematic Set-Set systems are usually specified just by listing the rule

schemas that induce their rules of inference, as we exemplify below.

Example 45. Consider the schematic system R→¬
S given by the following rule schemas:

¬p, q
p → q sS

1

p,¬q
¬(p → q)

sS
2

p → q,¬q
¬p sS

3

¬(p → q)

p sS
4

¬(p → q)

¬q sS
5

p, p → q
q sS

6

p
¬¬p sS

7

¬¬p
p sS

8 p,¬p sS
9

Notice that what distinguishes this calculus from a standard Hilbert calculus is the rule of

inference given by the last rule schema, whose succedent is a set with two formulas. By

57

the procedure described in [43], we have that the Set-Set consequence-relation induced

by this calculus is the {→,¬}-fragment of Sobociński’s three-valued logic S3 [60].

Example 46. Consider the calculus R∧¬
BK consisting of the following rules of inference:

p, q
p ∧ q sBK

1

p ∧ q
p sBK

2

p ∧ q
q sBK

3

¬p,¬q
¬(p ∧ q)

sBK
4

¬(p ∧ q)

p,¬p sBK
5

¬(p ∧ q)

q,¬q sBK
6

p,¬q
¬(p ∧ q)

sBK
7

¬p, q
¬(p ∧ q)

sBK
8

p
¬¬p sBK

9

¬¬p
p sBK

10

p,¬p sBK
11

By [43], this calculus axiomatizes the {∧,¬}-fragment of Bochvar’s three-valued logic [15],

where a third value is introduced to refer to “meaningless” sentences. In the last rule, we

observe that Set-Set rule instances may have an empty succedent.

Example 47. The following Set-Set calculus, which we call RFDE, axiomatizes Dunn-

Belnap’s FDE, again as a consequence of the procedure in [43]:

p ∧ q
p sFDE

1

p ∧ q
q sFDE

2

p, q
p ∧ q sFDE

3

p
p ∨ q sFDE

4

q
p ∨ q sFDE

5

p ∨ q
p, q sFDE

6

¬(p ∧ q)

¬p,¬q sFDE
7

¬p
¬(p ∧ q)

sFDE
8

¬q
¬(p ∧ q)

sFDE
9

¬(p ∨ q)

¬p sFDE
10

¬(p ∨ q)

¬q sFDE
11

¬p,¬q
¬(p ∨ q)

sFDE
12

p
¬¬p sFDE

13

¬¬p
p sFDE

14

We give now an intuitive account of derivations and proofs in a Set-Set system,

for then introducing these concepts formally. Set-Set derivations are bounded labelled

rooted trees in which the presence of each nonroot node is justified by the application of

a rule instance of the Set-Set system at hand. The applicability of a rule instance in

a branch of a derivation is subjected to the antecedent of this very rule being included

in the union of all labels of the nodes of that branch (that is, the premises of the rule

58

must be satisfied by that branch). The result of such application is the expansion of the

branch with new branches, one for each formula in the succedent of the applied rule

instance. Each new child node is labelled with the formulas of the ancestor nodes plus

one of the formulas in the succedent of the applied rule. If the succedent of the applied

rule instance is empty, the branch gets discontinued (its leaf is labelled with *). A proof

that Ψ follows from Φ is then a derivation whose root is labelled with a subset of Φ

and every leaf node either has a formula in common with Ψ or is discontinued. Notably,

the Set-Fmla H-formalism is the particular case of this more general setting in which

the succedent of rules are singletons and, consequently, derivations are deemed to have

a single branch, being thus equivalent to a sequence of formulas, as expected. As one

of the goals of the present study is to generalize this formalism to the two-dimensional

environment, we proceed to a more formal presentation.

Definition 48. Let R be a Set-Set system. An R-derivation t is a bounded labelled rooted

tree in Der(ℒ1D, Inst(R)) (check Definition 32). We represent R-derivations graphically as

per Figure 3.5.

59

Φ Φ

*

Γ
∅

Φ

𝜓n

· · ·

. . .𝜓2

· · ·

𝜓1

· · ·

Γ
𝜓1,𝜓2,...,𝜓n

Figure 3.5.: Graphical representation of finite R–derivations, in the form of a leaf node, a
discontinued node and an expanded node, respectively. The dashed edges and
blank circles represent other nodes and edges that may exist in the derivation.
Notice that, in the case of expanded nodes, we omit the formulas inherited
from the parent node, exhibiting only the ones introduced by the applied
rule of inference. Also, we have written the rule instance of the rule being
applied in the second and third trees, but in practice only the name of the
rule of inference, or the name of its rule schema in case it is schematic, will
be written for simplicity. In these cases, we emphasize that a precondition
for the application of the rule instance is that Γ ⊆ Φ.

Definition 49. A node n of an R-derivation t is called ∆-closed in case it is discontinued

or when it is a leaf node with ℓt(n) ∩∆ ̸= ∅. A branch of t is ∆-closed when it ends in a

∆-closed node. When every branch in t is ∆-closed, we say that R is itself ∆-closed.

Definition 50. An R-proof of a Set-Set statement (Φ,Ψ) is a Ψ-closed R-derivation t

such that ℓt(rt(t)) ⊆ Φ.

Consider the binary relation �R on Pow(LΣ(P)) such that Φ �R Ψ if, and only if,

there is an R-proof of (Φ,Ψ). The following result establishes a close connection between

the above definition of and Set-Set consequence relations.

Proposition 51. The relation �R is the smallest Set-Set consequence relation con-

taining the rules of inference of R. If R is schematic, then �R is substitution-invariant,

and, if it is finitary, then �R is finitary and every R-proof of a statement can be turned

into a finite R-proof of the same statement.

Proof. The relation �R is substitution-invariant because Inst(R) is closed under substitu-

tion instances. It follows directly from Proposition 43 that �R is the least substitution-

60

invariant Set-Set consequence relation containing the rule instances of R. For the

remainder of the proof, the reader is referred to the proof of Proposition 62 and Corol-

lary 63, which are analogous results for the Set2-Set2 case.

Example 52. Below we show that ¬(p ∧ q) �RFDE
¬p ∨ ¬q; ¬p, q, r �R→¬

S
(q → p)→

(s → r), p → s and ¬(p ∧ q), p �R∧¬
BK
¬q:

¬(p ∧ q)

¬q

¬p ∨ ¬q
sFDE
5

¬p

¬p ∨ ¬q
sFDE
4

sFDE
7

¬p, q, r

¬s

¬(q → p)

s → r

(q → p)→ (s → r)

sS
1

sS
1

sS
2

s

p → s
sS
1

sS
9

¬(p ∧ q), p

¬qq

p ∧ q

*
sBK
11

sBK
1

sBK
6

Given a Set-Set system R and a Σ-nd-matrix M, we say that R is sound for M

when �R ⊆ �M and that it is complete for M when the converse inclusion holds. When it

is both sound and complete for M, we say that it is adequate for M or an axiomatization

for M. It was proved in [43, 17] that whenever M satisfies a very inclusive sufficient

expressiveness requirement, one can algorithmically produce a Set-Set axiomatization

for it. More than that, the produced systems satisfy the property of Θ-analyticity, for a

particular Θ ⊆ LΣ(P), according to which the subformulas of the Set-Set statement

being proved plus the formulas resulting from substituting those subformulas in the

formulas in Θ are enough to produce the desired proof when it exists. The reader is

referred to the latter references for a thorough exposition, as Set-Set systems are not

the main topic of the present study. In Chapter 4, we will present in detail the property

of Θ-analyticity for our generalization of the Set-Set formalism to the two-dimensional

61

environment, which we call Set2-Set2 formalism.

62

4. Two-dimensional Hilbert-style

formalism

Our goal in this chapter is to develop an H-formalism for two-dimensional logics

inspired in the H-formalism for Set-Set logics detailed in Section 2.5.2, which we call

two-dimensional symmetrical formalism or Set2-Set2 H-formalism. After presenting

and illustrating the main definitions, taking advantage of the general notions and results

presented in Section 3.1, we will describe an exponential proof-search algorithm over

this novel deductive formalism, giving a correctness proof and performing a complexity

analysis.

4.1. Rules of inference and derivations

We begin by defining what we mean by rules of inference in a Set2-Set2 system.

As we are designing an H-formalism, rule instances are expected to be Set2-Set2

statements. Notice that, in Definition 53 below, we have changed the positioning of the

sets of formulas in the statement representing a rule instance, in order to facilitate the

development of proofs in trees growing downwards from the premises to the conclusion.

We emphasize, however, that this is just a modification in notation; the objects being

denoted are still the same. Moreover, we change a bit the visual so as to make it clear

when we are referring to a rule instance or to an ordinary Set2-Set2 statement.

63

Definition 53. A Set2-Set2 rule of inference R is a collection of Set2-Set2 statements

r, called Set2-Set2 rule instances and denoted by ΦY ‖ ΦN

Φ Y‖ Φ N
, where (ΦY,ΦN) is the an-

tecedent and (Φ Y,Φ N) is the succedent of the rule instance. We let branch(r) := Φ Y∪Φ N

be the branching of r. A Set2-Set2 system (sometimes called Set2-Set2 calculus) R is

a collection of Set2-Set2 rules of inference. We denote by Inst(R) the union of all rules

of inference of R, that is, all the rule instances of R.

Definition 54. A Set2-Set2 rule instance is finitary when the sets in their antecedent

and succedent are finite. A Set2-Set2 rule of inference is finitary when all of its rule

instances are finitary. Finally, a Set2-Set2 system is finitary when all its rules of

inference are finitary.

A rule of inference is commonly specified schematically, namely, as the collection

of all substitution instances of a representative Set2-Set2 statement.

Definition 55. A Set2-Set2 rule of inference is schematic when it is the collection of

all substitution instances of a Set2-Set2 statement s, called the rule schema of that very

rule. The rule of inference with schema s will be denoted by Rs. A Set2-Set2 system is

schematic when all of its rules of inference are schematic.

In view of the previous definition, a schematic Set2-Set2 system may be

presented by just indicating a collection of Set2-Set2 rule schemas, as exemplified

below.

Example 56. Consider the schematic Set2-Set2 calculus RI given by the following

64

rule schemas:

p ‖

p ∨ q ‖
∨41

q ‖

p ∨ q ‖
∨42

‖ p, q

‖ p ∨ q
∨43

‖ p ∨ q

‖ q
∨44

‖ p ∨ q

‖ p
∨45

p ∧ q ‖

p ‖
∧41

p ∧ q ‖

q ‖
∧42

p, q ‖

p ∧ q ‖
∧43

‖ q

‖ p ∧ q
∧44

‖ p

‖ p ∧ q
∧45

‖ ¬p

p ‖
¬41

‖ p

¬p ‖
¬42

¬p ‖

‖ p
¬4

3

p ‖

‖ ¬p
¬44

For example, the intuitive reading of rule schema ∨4
1 is that if a formula 𝜙 is accepted,

then the formula 𝜙 ∨ 𝜓 can also be accepted. The rules containing ∨ and ∧ do not involve

more than one dimension, however, the case of ¬ shows how rejection is internalized

using this connective. For instance, ¬44 tells us that if we accept 𝜙, we may reject ¬𝜙.

In a sense that we are about to explain, this system can be shown to induce the same

B-consequence relation as the one induced by the Σ-nd-B-matrix described in Example 1.

Clearly, Set2-Set2 rule instances are expansors over the node labels algebra

ℒ2D (check Example 25). Thus, analogously to what we did in the Set-Set case, we take

advantage of the contents of Section 3.1 to define derivations in a Set2-Set2 system:

Definition 57. Let R be a Set2-Set2 system. An R-derivation t is a bounded labelled

rooted tree in Der(ℒ2D, Inst(R)) (check Definition 32). Figure 4.1 shows how we graphically

represent finite R-derivations.

65

ΦY ‖ΦN ΦY ‖ΦN

*

ΨY ‖ ΨN

∅ ‖ ∅

ΦY ‖ΦN

‖ 𝛿n

· · ·

. . .‖ 𝛿1

· · ·

𝛾m ‖

· · ·

. . .𝛾1 ‖

· · ·

ΨY ‖ ΨN

𝛾1,...,𝛾m ‖ 𝛿1,...,𝛿n

Figure 4.1.: Graphical representation of finite R–derivations. The dashed edges and blank
squares represent other nodes and edges that may exist in the derivation.
Notice that we omit the formulas inherited from the parent node, exhibiting
only the ones introduced by the applied rule of inference. Also, we have
written the rule instance of the rule being applied in the second and third
trees, but in practice only the name of the rule of inference will be written
for simplicity. In these cases, we emphasize that a precondition for the
application of the rule instance is that ΨY ⊆ ΦY and ΨN ⊆ ΦN.

Definition 58. Let t be an R-derivation. A node n of t is (Ψ Y,Ψ N)-closed in case it

is discontinued (namely, labelled with *) or it is a leaf node with ℓt(n) = (ΦY,ΦN) and

either ΦY ∩Ψ Y̸= ∅ or ΦN ∩Ψ N̸= ∅. A branch of t is (Ψ Y,Ψ N)-closed when it ends in a

(Ψ Y,Ψ N)-closed node.

Definition 59. An R-derivation t is (Ψ Y,Ψ N)-closed when all of its branches are

(Ψ Y,Ψ N)-closed.

Note that, in the above definitions, we have used the definition of match for ℒ2D,

as presented in Example 25. The next definition establishes the meaning of an R-proof

using R-derivations, being a particular instance of Definition 33.

Definition 60. An R-proof of
(︁
Φ NΦ

Y

ΦY ΦN

)︁
is a (Φ Y,Φ N)-closed R-derivation t with ℓt(rt(t)) ⊑

66

(ΦY,ΦN).

Example 61. Below is a proof of
(︁

¬p∨¬q
¬(p∧q)

)︁
in the system RI introduced in Exam-

ple 56:

¬(p ∧ q) ‖

‖ p ∧ q

‖ q

¬q ‖

¬p ∨ ¬q ‖
∨42

¬42

‖ p

¬p ‖

¬p ∨ ¬q ‖
∨41

¬42

∧46

¬43

Figure 4.2.: Example of a derivation in tree form. For the sake of a cleaner presentation,
we omit the formulas that are inherited when expanding a node.

Given a Set2-Set2 calculus R, we define the 2 × 2-place relation ·
· |

·
· R over

Pow(LΣ(P)) such that Φ N
ΦY
|Φ Y

ΦN
R if, and only if, there is a proof of

(︁
Φ NΦ

Y

ΦY ΦN

)︁
in R. Where R

is a Set2-Set2 rule of inference, we may sometimes write ·
· |

·
· R to refer to the 2× 2-place

relation induced in the way described above by the Set2-Set2 system containing R as

the only rule of inference. This will be of particular interest in the next subsection to

facilitate the description of the proof-search algorithm, as well as the proofs of the results

related to it. Notice that Φ N
ΦY
|Φ Y

ΦN
R if, and only if, (ΦY,ΦN) ⊢Inst(R) (Φ Y,Φ N), where ⊢Inst(R)

is as defined in Definition 33. This will be of particular interest for the next proof, most

of which is covered by the proof of Proposition 43.

Proposition 62. The 2× 2-place relation ·
· |

·
· R is the smallest B-consequence relation

containing the rules of inference of R. If R is schematic, then ·
· |

·
· R is substitution-

invariant, and, if it is finitary, then ·
· |

·
· R is finitary.

67

Proof. In case R is schematic, the relation ·
· |

·
· R is substitution-invariant because Inst(R)

is closed under substitution instances. Then, it follows directly from Proposition 43

that ·
· |

·
· R is the least substitution-invariant B-consequence relation containing the rule

instances of R. Suppose now that R is finitary and assume that Φ N
ΦY
|Φ Y

ΦN
R , witnessed by

an R-proof t, assumed here to be concise. Then (a): ℓt(rt(t)) = (ΨY,ΨN) ⊑ (ΦY,ΦN). In

case t has a single node, we will have either 𝜙 ∈ ΨY ∩ Φ Yor 𝜙 ∈ ΨN ∩ Φ N. In each case,

respectively, a labelled rooted tree with a single label labelled with 𝜙 witnesses
𝜙
|𝜙 R or

𝜙 |
𝜙 R , as desired. In case t has more than one node, we should notice that, since each

rule instance of R has finitely many formulas in the succedent, t has finitely many nodes

in each level, thus it has finitely many leaf nodes. Since t is concise, each leaf node n not

labelled with * has a formula that was introduced by the application of the rule instance

that produced that very node, which we denote by 𝜓n. Without loss of generality, we

assume that this formula is in Φ Y∪ Φ N, since t bears witness to Φ N
ΦY
|Φ Y

ΦN
R . Consider then

the sets Γ Y:= {𝜓n | 𝜓n ∈ Φ Y} and Γ N:= {𝜓n | 𝜓n ∈ Φ N}, which are finite subsets of Φ Y

and Φ N, respectively. In addition, let (∆Y,∆N) and (∆ Y,∆ N) be respectively the union

of the antecedents and the succedents of all rule instances applied in t, whose component

sets are finite since R is finitary. Consider the tree t′ resulting from t by changing, for each

node n, the label of n to ℓt(n) ∩ (∆Y ∪∆ Y,∆N ∪∆ N). Notice that t ′ is an R-derivation,

and ℓt
′
(rt(t′)) = (ΓY,ΓN) has finite component sets. Moreover, Γ𝛼 is finite and Γ𝛼 ⊆ Φ𝛼

for all 𝛼 ∈ {Y,N, Y

, N} and t′ bears witness to Γ N
ΓY
|Γ Y

ΓN
R , as desired.

In the proof of the latter result, we have shown how to convert an R-proof of a

B-statement whose nodes might be labelled with infinite sets of formulas into an R-proof

that proves the same statement but having finite sets formulas labelling each node. It

turns out that we may convert this tree into a tree with finitely many nodes. In this way,

when R is finitary, we only need to consider finite R-derivations:

Corollary 63. When R is finitary, we have Φ N
ΦY
|Φ Y

ΦN
R if, and only if, there is a finite tree

68

bearing witness to this fact.

Proof. Suppose that t is an R-proof of s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
. Apply the construction described

in the proof of Proposition 62 in order to build an R-proof t′ of s whose nodes are all

labelled with finite sets of formulas. If a node in t′ has infinitely many ancestors, then,

since its label is finite, only finitely many of those ancestors were produced by relevant

applications of rule instances. We may then apply the procedure described in the proof

of Proposition 35 to remove the irrelevant applications of rule instances that lead up to

such node, in such a way that its set of ancestors becomes finite. In this way, we may

convert t′ to a finite R-proof of the same statement.

Given a Set2-Set2 system R and a Σ-nd-B-matrix M, we say that R is sound

for M when ·
· |

·
· R ⊆

·
· |

·
· M and that it is complete for M when the converse holds. When it

is both sound and complete for M, we say that it is adequate for M or an axiomatization

for M.

As we have mentioned, the calculus presented in Example 56 is an axiomatization

for the ΣFDE-nd-B-matrix MI presented in Example 17. We take now the chance to

exemplify the modularity of non-deterministic semantics by illustrating how adding

rules to an axiomatization of a nd-B-matrix imposes refinements (that is, restrictions

on outputs of some interpretations) in order to guarantee soundness of these very rules.

Such mechanism is essential to the axiomatization procedure presented in Chapter 5.

Example 64. We obtain an axiomatization for ME by adding the following rule schemas

to the calculus of Example 56:

p ∨ q ‖

p, q ‖
∨46

‖ p ∧ q

‖ p, q
∧46

69

If, in addition, we include the rule schema

q ‖ q

p ‖ p
T4

we axiomatize MK (see Example 19). Let us explain the intuition behind this mechanism

considering the case of schema ∧46; the other rules will follow the same principle. What

the rule of inference induced by ∧46 enforces is that any refinement of MI with respect to

which this rule is sound must disallow valuations that assign values in {⊥, t} to formulas

𝜙 and 𝜓 while assigning a value in {⊤, f} to 𝜙 ∧ 𝜓, for otherwise such valuation would

constitute a countermodel for the instances of that very rule. This is reflected in ∧E

(Example 2) by the absence of the values from the set {⊤, f} in the entries corresponding

to the truth-value assignments in which both inputs belong to {⊥, t}.

Example 65. By the same mechanism used in the previous example, in adding the

rules ‖

p ‖ p
⊥E and p ‖ p

‖
⊤E to the axiomatization of ME , we force empty outputs on

any truth-table entry whose input involves either ⊥ or ⊤. It follows that Classical Logic

inhabits the t-aspect of the resulting Σ-nd-B-matrix, hereby called MC .

We emphasize that a Set2-Set2 system R such that ·
· |

·
· R coincides with a

given B-consequence relation C := ·
· |

·
· — we say, in this case, that R axiomatizes ·

· |
·
· —

can be seen as an axiomatization for each of the Set-Set logics associated to ·
· |

·
· , since

a Set-Set statement can be translated to a B-statement according to the Set-Set

logic of interest. For example, if we want to check that ΦY �C
t Φ Y, we may just check if(︁

∅ Φ Y

ΦY ∅

)︁
is provable in R. In Chapter 6, we used this mechanism for providing a finite

analytic axiomatization for the Set-Set logic mCi. Finally, notice that, in this sense,

Set2-Set2 systems may axiomatize p-consequences and q-consequences in a natural way,

without relying on signals (recall Section 2.5.3).

70

4.2. Analyticity

A Set2-Set2 system may give us the guarantee that the formulas appearing in

a statement to be proved in that system somehow provides enough material to produce

the desired proof, if it exists. The next definitions develop the notion of Θ-analyticity for

Set2-Set2 systems, which is a way of expressing such a guarantee. They are essentially

adaptations of this same notion for Set-Set systems, established and studied recently

in [17, 43].

We denote by fmlas(t) the set of formulas occurring as node labels in an R-

tree t, that is, fmlas(t) :=
⋃︀

n∈nds(t) ℓ
t(n). Given a B-statement s :=

(︁
Φ NΦ

Y

ΦY ΦN

)︁
, we let

subf(s) :=
⋃︀
𝛼 subf[Φ𝛼] be the collection of subformulas of s. In addition, provided that

Θ is a set of unary formulas (that is, formulas on a single propositional variable), we let

gsubfΘ(s) := subf(s) ∪ {𝜎(𝜙) | 𝜙 ∈ Θ, 𝜎 : P → subf(s)}, the collection of Θ-instantiated

subformulas of s, again a notion adapted from [17, 43].

Example 66. Consider the set Θ := {p,¬p} of unary formulas over a signature con-

taining a unary connective ¬ and a binary connective ∧. Then the set of Θ-instantiated

subformulas of the B-statement
(︁

r
q∧¬s r

)︁
is {q, r , s,¬s, q ∧ ¬s,¬q,¬r ,¬¬s,¬(q ∧ ¬s)}.

Definition 67. An R-proof t of s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
is Θ-analytic when fmlas(t) ⊆ gsubfΘ(s).

Example 68. We provide here {p}-analytic proofs of the statements
(︁

s s
r∧p p∨q

)︁
and(︁

p,¬p

)︁
, respectively, in the calculi for MK and MC presented in the previous examples.

One should also note that the proof given in Example 61 is also {p}-analytic.

71

r ∧ p ‖ p ∨ q

p ‖

‖ p

‖ ss ‖

T4

∨45

∧42

p,¬p ‖

‖ p

*

⊤E

¬43

When there is a Θ-analytic R-proof of
(︁
Φ NΦ

Y

ΦY ΦN

)︁
, we write Φ N

ΦY
|Φ Y

ΦN
Θ
R . Similar to

Proposition 62, we have:

Proposition 69. The 2× 2-place relation ·
· |

·
·
Θ
R is a B-consequence relation.

Definition 70. A Set2-Set2 calculus R is Θ-analytic when ·
· |

·
· R ⊆

·
· |

·
·
Θ
R (notice that

the converse always hold).

In Chapter 5, we will see that Θ-analytic Set2-Set2 systems are not rare,

inconceivable creatures; they are actually pretty common: there is one for each Σ-nd-B-

matrix satisfying a (very inclusive) sufficient expressiveness requirement. Before going into

that, we will introduce and study a straightforward exponential proof-search procedure

for finite and finitary Set2-Set2 systems.

4.3. A proof-search and countermodel-search

algorithm

Let s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
be an arbitrary Set2-Set2 statement, R be a finite and finitary

Set2-Set2 system, and Θ be a finite set of unary formulas. Notice that, whenever R

is Θ-analytic, it is enough to consider the rule instances in R[s] in order to provide a

proof of s in R. Searching for such a proof is clearly a particular case of finding a proof

of s using only candidates in a finite set R of finitary rule instances. A proof-search

72

algorithm for this more general setting is readily available and its pseudocode is presented

in Algorithm 4.1 by means of a function called Proof-Search. It is essentially a version

for the Set2-Set2 environment of the procedure described in the concluding remarks

of [43]. The algorithm searches for a proof by expanding nodes that are not closed or

discontinued using only instances in R that were not used yet in the branch of the node

under expansion. As we shall see in the sequel, the order in which applicable instances

are selected does not affect the result, although for sure smarter choice heuristics may

well improve the performance of the algorithm in particular cases.
Algorithm 4.1: Proof search over a finite set of finitary rule instances

1 function Proof-Search(F := (ΨY,ΨN), C := (Φ Y,Φ N), R):
Input: antecedent in F , succedent in C and a finite set R of finitary rule instances

2 t← a tree with a single node labelled with (ΨY,ΨN)

3 if Ψ𝛼 ∩ Φ𝛼̃ ̸= ∅ for some 𝛼 ∈ {Y,N} then return t

4 foreach rule instance r :=
ΔY ‖ ΔN

Δ Y‖ Δ N
∈ R do

5 if Δ𝛼̃ ∩Ψ𝛼 = ∅ and Δ𝛼 ⊆ Ψ𝛼 for each 𝛼 ∈ {Y,N} then

6 if Δ Y∪Δ N= ∅ then return

the tree resulting from adding a node labelled with * as the single child of rt(t).

7 foreach 𝛼 ∈ {Y,N} and 𝜙 ∈ Δ𝛼̃ do

8 t′ ←Proof-Search((ΨY ∪ PY(𝜙),ΨN ∪ PN(𝜙)), C , R∖{r}), where

P𝛼(𝜙) is ∅ if 𝜙 ̸∈ Δ𝛼̃ and {𝜙} otherwise

9 t← the tree resulting from adding t′ as a subtree of t, with the root of

the latter being the parent of the root of the former.

10 if t′ is not C-closed then return t

11 end

12 if t is C-closed then return t

13 end

14 end

15 return t

73

When the proof-search algorithm produces a tree that is not C -closed, we say

that it is C-open, or, when there is no risk of confusion, just open. The following lemma

proves the termination of Proof-Search and its correctness. The subsequent result

establishes the applicability of this algorithm for proof search over Θ-analytic calculi.

Lemma 71. Let R be a finite and finitary Set2-Set2 system, whose rules of inference

are all finite, that is, Inst(R) is a finite set of finitary rule instances. Then the procedure

Proof-Search((ΦY,ΦN), (Φ Y,Φ N), Inst(R)) always terminates, returning an R-tree that

is (Φ Y,Φ N)-closed if, and only if, Φ N
ΦY
|Φ Y

ΦN
R .

Proof. Let R be a system as specified in the statement, set F := (ΦY,ΦN) and set

C := (Φ Y,Φ N). Also, let R := Inst(R). We proceed by induction on |R|. In the base case,

R = ∅, the algorithm obviously terminates and returns a proof of s iff ΦY ‖ ΦN

Φ Y‖ Φ N
∅. In

the inductive step, assume that |R| ≥ 1 and that (IH): the present lemma holds for all

sets of rule instances R′ with |R′| = |R| − 1. Since R is finite and contains only finitary

rule instances, and each recursive call (line 8) terminates by (IH), the whole algorithm

terminates. Also, if a C -closed tree is produced, it means that one of the conditions in

lines 3, 6 or 12 was satisfied. The first possibility (line 3) was treated in the base case.

The second one (line 6) means that there is a rule instance in R with an empty succedent

satisfying the antecedents, in which case a tree with its root labelled with F having a

single child labelled with * is returned, clearly bearing witness to Φ N
ΦY
|Φ Y

ΦN
R . The third

possibility (line 12) means that there is a rule instance r :=
ΔY ‖ ΔN

Δ Y‖ Δ N
∈ R applicable to

the antecedents in F (line 5), and, by (IH), the recursive calls (line 8) produce trees

that bear witness to Φ N
ΦY,𝜙
|Φ Y

ΦN
R∖{r} and Φ N

ΦY
| Φ Y

ΦN,𝜓
R∖{r} for each 𝜙 ∈ ∆ Yand 𝜓 ∈ ∆ N. The

resulting tree, then, bears witness to Φ N
ΦY
|Φ Y

ΦN
R . On the other hand, if an open tree is

produced, then for a rule instance r :=
ΔY ‖ ΔN

Δ Y‖ Δ N
∈ R applicable to F , some recursive call

resulted in an open tree. Assume, without loss of generality, that such call referred to

an expansion by 𝜙 ∈ ∆ Y. Then, by (IH), Φ N
ΦY,𝜙
×| Φ Y

ΦN
R∖{r} . Because 𝜙 ∈ ∆ Y, the instance

74

r does not play any role in deriving
(︁

Φ N Φ Y

ΦY,𝜙 ΦN

)︁
, so we have Φ N

ΦY,𝜙
×| Φ Y

ΦN
R and, by (D2), it

follows that Φ N
ΦY
×| Φ Y

ΦN
R .

A B-consequence ·
· |

·
· is said to be decidable when there is some decision procedure

that takes a B-statement
(︁
Φ NΦ

Y

ΦY ΦN

)︁
as input and outputs true when Φ N

ΦY
|Φ Y

ΦN
is the case,

and outputs false when Φ N
ΦY
×| Φ Y

ΦN
.

Lemma 72. If R is a finite and finitary Θ-analytic Set2-Set2 system, then Proof-Search

is a proof-search algorithm for R and a decision procedure for ·
· |

·
· R .

Proof. We know that R[s] must be enough to provide a derivation of s, since R is

Θ-analytic. Clearly, such set is finite and contains only finitary rule instances, hence the

present result is a direct consequence of Lemma 71.

In what follows, let s :=
(︁
Φ NΦ N
ΦY ΦN

)︁
be a B-statement and size(s) :=

∑︀
𝛼 size[Φ𝛼]

be the size of s.

Lemma 73. Let R be a finite Set2-Set2 calculus, with finite and finitary rules of infer-

ence. Then the worst-case running time of Proof-Search((ΦY,ΦN), (Φ Y,Φ N), Inst(R))

is O(bn + n · p(s)), where b := maxr ∈ Inst(R) branch(r), s := size(s) and n := |Inst(R)|.

Proof. The worst-case running-time T (n, s) of Proof-Search occurs when Φ N
ΦY
|Φ Y

ΦN
R ,

the set R needs to be entirely inspected until an applicable rule instance is found, and

such an instance does not have an empty set of succedents. The following table assigns

a cost and simplified upper bounds to execution times of the relevant instructions of

Algorithm 4.1 in the described scenario.

75

Instruction line Cost Times
2 c1 1
3 p(s) 1
4 c2 n
5 p(s) n
6 c3 1
7 c4 b
8 T (n − 1, s + p(s)) b
9 c5 b
10 p(s) b
12 p(s) 1

Notice that T (0, s) = c1 + p(s) and, based on the assignments above and after some

algebraic manipulations, we have, for n ≥ 1,

T (n, s) ≤ b · T (n − 1, s + p(s)) + 2n · p(s). (4.1)

We prove by induction on n that T (n, s) ∈ O(bn + n · p(s)). We will take advantage

of the asymptotic notation and choose the base case as n = 1. In such case, we have

T (1, s) ≤ bT (0, s + p(s)) + 2p(s) = 2p(s) + bc1 + bp(s) = c1b + (2 + b)p(s), and the

upper bound suffices. In the inductive step, let n > 1 and assume, for all s ≥ 0, that

76

T (n − 1, s) ≤ k1 · bn−1 + k1 · (n − 1) · p(s), for some k1 > 0. Then

T (n, s) ≤ b · T (n − 1, s + p(s)) + 2n · p(s)

≤ b · (k1 · bn−1 + k1 · (n − 1) · p(s)) + 2n · p(s)

= k1 · bn + b · k1 · (n − 1) · p(s) + 2n · p(s)

= k1 · bn + (2n + b · k1 · n − b · k1) · p(s)

≤ k1 · bn + (2n + b · k1 · n) · p(s)

= k1 · bn + k2 · n · p(s), with k2 = 2 + b · k1

≤ k3 · (bn + n · p(s)), with k3 = max{k1, k2}

∈ O(bn + n · p(s))

Theorem 74. If R is a finite and Θ-analytic Set2-Set2 system with finite and finitary

rules of inference, Proof-Search is a proof-search algorithm for R that runs in expo-

nential time in general, and in polynomial time if R contains only rules with at most one

formula in the succedent.

Proof. Clearly, the set of all instances of rules of R using only formulas in gsubfΘ(s) is

finite and contains only finitary rule instances, and its size is polynomial in size(s). The

announced result then follows directly from Lemma 73.

A branch of an C -open tree t is itself open when it ends in a node which is not

C -closed. Open branches in a tree resulting from a failed attempt of finding a proof of a

Set2-Set2 statement s using Algorithm 4.1 may help us in coming up with a semantical

countermodel for s, provided we have enough ingredients in hand. As we explain in the

proof of the proposition below, the label of the leaf node of an open branch of the said

tree gives us partitions on the set of Θ-instantiated subformulas of s. In the next chapter,

77

we will produce Set2-Set2 systems having a semantical counterpart in terms of a single

nd-B-matrix in which there is a way to assign values to each subformula of the formulas

in s based on the obtained partitions. In this way, we will be able to provide a valuation

on that nd-B-matrix witnessing the non-provability of the statement.

Proposition 75. Suppose that R is Θ-analytic. Let t result from a failed proof search

attempt of the B-statement s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
using Algorithm 4.1. Then, from t, we may

extract sets ΨS,Ψ S⊆ gsubfΘ(s) such that gsubfΘ(s)∖Ψ S
ΨS

×| gsubfΘ(s)∖ΨS
Ψ S

R .

Proof. Since the proof search has failed, the produced tree t must have an open branch

b. Let (ΨS,Ψ S) be the label of the leaf node of b. As the algorithm searches for a Θ-

analytic proof, we have ΨS,Ψ S⊆ gsubfΘ(s). Moreover, the fact that the branch is open

means that it is not amenable to a relevant expansion by any of the rule instances of R

whose formulas are in gsubfΘ(s). In this way, we have gsubfΘ(s)∖Ψ S
ΨS

×| gsubfΘ(s)∖ΨS
Ψ S

Θ
R , and thus

gsubfΘ(s)∖Ψ S
ΨS

×| gsubfΘ(s)∖ΨS
Ψ S

R , since R is Θ-analytic.

It turns out that the pair of sets mentioned in the above result may be guessed

in time polynomial in the size of the B-statement s. This allows us to prove the following

result:

Theorem 76. If R is Θ-analytic, then the problem of deciding ·
· |

·
· R is in coNP.

Proof. Let s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
. Given a pair (ΨY,ΨN) with ΨY ∪ ΨN ⊆ gsubfΘ(s), Φ𝛼 ⊆ Ψ𝛼

and Φ𝛼̃ ∩Ψ𝛼 = ∅ for each 𝛼 ∈ {Y,N}, if we check that for every applicable rule instance
ΔY ‖ ΔN

Δ Y‖ Δ N
∈ R[s] we have Ψ𝛼∩∆𝛼̃ ̸= ∅ for each 𝛼 ∈ {Y,N}, then gsubfΘ(s)∖ΨN

ΨY
×| gsubfΘ(s)∖ΨY

ΨN
Θ
R ,

and thus, by (D2), Φ N
ΦY
×| Φ Y

ΦN
Θ
R . Since the amount of rule instances is polynomial in the size

of s, by guessing in polynomial time that pair (ΨY,ΨN) and performing the described

test we obtain a polynomial-time non-deterministic algorithm to verify whether Φ N
ΦY
×| Φ Y

ΦN
Θ
R ,

and so the problem of deciding ·
· |

·
· R is in coNP.

78

5. Analytic H-systems for

non-deterministic B-matrices

5.1. Sufficient expressiveness

We are interested here in formulating for Σ-nd-B-matrices a notion analogous

to that of sufficient expressiveness for Σ-nd-matrices, which is commonly referred to as

monadicity in the literature [57, 43, 17]. Such property entails that every truth-value

can be characterized by way of unary formulas S(p) in the object-language, in the sense

that a valuation assigns a value x to a formula 𝜙 whenever it behaves in a specific way

with respect to each S(𝜙). In a moment, we will see that Σ-nd-B-matrices satisfying this

property are all axiomatizable in terms of analytic Set2-Set2 systems by means of a

procedure that is easy to implement in the case of finite matrices.

Definition 77. Let M := ⟨A,Y,N⟩ be a Σ-nd-B-matrix.

• Given X ,Y ⊆ A and 𝛼 ∈ {Y,N}, we say that X and Y are 𝛼-separated, denoted by

X#𝛼Y , if X ⊆ 𝛼 and Y ⊆ 𝛼̃, or vice-versa.

• Given distinct truth-values x , y ∈ A, a unary formula S is a separator for (x , y)

whenever SA(x)#𝛼SA(y) for some 𝛼 ∈ {Y,N}. If for each pair of distinct truth-values

in A there is a separator for these values, then M is said to be sufficiently expressive.

• A set of unary formulas 𝒟x isolates x ∈ A whenever, for every y ̸= x, there exists a

79

separator in 𝒟x for x and y.

• A discriminator for M is a family 𝒟 := {(𝒟x
Y,𝒟x Y,𝒟x

N,𝒟x
N)}x∈A such that 𝒟x :=⋃︀

𝛼∈{Y,

Y

,N, N}𝒟x
𝛼 isolates x and SA(x) ⊆ 𝛼 whenever S ∈ 𝒟x

𝛼. We denote the set⋃︀
x∈A

⋃︀
𝛼∈{Y,

Y

,N, N}𝒟x
𝛼 by 𝒟◁▷ and say that 𝒟 is based on 𝒟◁▷.

Example 78. The tables below describe, respectively, a discriminator based on {p} for

any Σ-nd-B-matrix of the form ⟨𝒱4,Y4,N4⟩ (see Examples 1, 2 and 3), and a discriminator

for MmCi (recall Example 20) based on {p,¬p}:

x 𝒟x
Y 𝒟x Y 𝒟x

N 𝒟x
N

f ∅ p p ∅
⊥ ∅ p ∅ p
⊤ p ∅ p ∅
t p ∅ ∅ p

x 𝒟x
Y 𝒟x Y 𝒟x

N 𝒟x
N

f ∅ p p ∅
F ∅ p ∅ p
I p,¬p ∅ p ∅
T p ¬p p ∅
t p ∅ ∅ p

Let us look at the rightmost table. Each row corresponds to a truth-value x and describes

the sets 𝒟x
𝛼, for each 𝛼 ∈ {Y,

Y

,N, N}. Consider, for instance, the value I . The table

indicates that 𝒟I
Y = {p,¬p}, 𝒟I Y= ∅, 𝒟I

N = {p} and 𝒟I
N= ∅. The union of these sets

isolates I , since p is a separator for (I , f), (I ,F) and (I , t), and ¬p is a separator for

(I ,T) in MmCi.

We should emphasize here the significance of not requiring that each pair of

truth-values ought to be separable with respect to both distinguished sets of truth-values

in order to characterize an nd-B-matrix as sufficiently expressive (note that, in the

definition of separator presented above, we have used “for some 𝛼 ∈ {Y,N}” instead of

“for each 𝛼 ∈ {Y,N}”). This stronger alternative would be too restrictive, hiding the

power gained by having an additional dimension in the matrix structure. As we will see

in Chapter 6, a pair of truth-values might not be separable with respect to one of the

dimensions, while being separable with respect to the other one. Despite that, when being

able to separate each pair of truth-values with respect to at least one of the dimensions,

80

we are still capable of characterizing each truth-value of the nd-B-matrix in hand, and,

as we will see in a moment, algorithmically axiomatize it.

The following result — which will be instrumental, in particular, within the

soundness proof of the axiomatizations that we will develop later on — shows that a

discriminator is capable of uniquely characterizing each truth-value of the corresponding

Σ-nd-B-matrix:

Lemma 79. If M := ⟨A,Y,N⟩ is a sufficiently expressive Σ-nd-B-matrix and 𝒟 is a

discriminator for M, then, for all 𝜙 ∈ LΣ(P), x ∈ A and M-valuation v,

v(𝜙) = x iff v[𝒟x
𝛼(𝜙)] ⊆ 𝛼 and v[𝒟x

𝛼̃(𝜙)] ⊆ 𝛼̃ for every 𝛼 ∈ {Y,N}.

Proof. From the left to the right, assume that v(𝜙) = x and let 𝛼 ∈ {Y,N}. If S ∈ 𝒟x
𝛼,

then v(S(𝜙)) ∈ SA(v(𝜙)) = SA(x), and we know that SA(x) ⊆ 𝛼 if S ∈ 𝒟x
𝛼. The same

reasoning applies for S ∈ 𝒟x
𝛼̃. Conversely, we may argue contrapositively: suppose that

v(𝜙) = y ̸= x and consider the separator S ∈ 𝒟x for x and y, such that SA(x)#𝛼SA(y), for

some 𝛼 ∈ {Y,N}. By cases, if S ∈ 𝒟x
𝛼, then v(S(𝜙)) ∈ SA(y) ⊆ 𝛼̃ and so v(𝒟x

𝛼(𝜙)) ̸⊆ 𝛼;

analogously, we have v(𝒟x
𝛼̃(𝜙)) ̸⊆ 𝛼̃ if S ∈ 𝒟x

𝛼̃.

5.2. Axiomatizing non-deterministic B-matrices

We now describe four collections of rule schemas by which any sufficiently expres-

sive Σ-nd-B-matrix M is constrained. Together, these schemas constitute a presentation

of a calculus that will be denoted by RM
𝒟 , where 𝒟 is a discriminator for M. The first

collection, (RM𝒟
∃), is intended to exclude all combinations of separators that do not

correspond to truth-values. The second, (RM𝒟
D), sets the combinations of separators that

characterize acceptance apart from those that characterize non-acceptance, and sets the

combinations of separators that characterize rejection apart from those that characterize

81

non-rejection. The third one, (RM𝒟
Σ), fully describes, through appropriate refinements,

the interpretation of the connectives of Σ in M. At last, the rules in (RM𝒟
T) guarantee

that values belong to total sub-Σ-nd-B-matrices of M.

In what follows, given X ⊆ A, we shall use (𝒟̇X
Y , 𝒟̇X

N) to denote a pair of sets in

which 𝒟̇X
𝛼 , with 𝛼 ∈ {Y,N}, is obtained by choosing an element of 𝒟x

𝛼 for each x ∈ X .

When X = ∅, the only possibility is the pair (∅,∅); moreover, when 𝒟x
Y ∪ 𝒟x

N = ∅ for

some x ∈ X , no such pair exists. We shall use (𝒟̇XY, 𝒟̇X
N) analogously.

Example 80. Consider the discriminator for MmCi presented in Example 78. For

X := {I ,T}, the possible pairs (𝒟̇X
Y , 𝒟̇X

N) that we may choose in this situation are

({p}, {p}) and ({¬p, p}, {p}), whilst there is a single possible pair (𝒟̇XY, 𝒟̇X
N), which is

({p},∅). For X := {F}, there is no choice for (𝒟̇X
Y , 𝒟̇X

N).

We are now ready to introduce the recipe for axiomatizing sufficiently expressive

Σ-nd-B-matrices. Notice that we do not constrain the nd-B-matrix to be finite.

Definition 81. Let M := ⟨A,Y,N⟩ be a Σ-nd-B-matrix and 𝒟 be a discriminator for

M. The Set2-Set2 calculus RM
𝒟 is presented by way of the following rule schemas:

(RM𝒟
∃) for each X1 ⊆ A and each possible choices of (𝒟̇X0

Y , 𝒟̇X0
N) and of (𝒟̇X1Y, 𝒟̇X1

N), with

X0 := A∖X1,
𝒟̇X1Y ‖ 𝒟̇X1

N

𝒟̇X0
Y ‖ 𝒟̇X0

N

(RM𝒟
D) for an arbitrary propositional variable p ∈ P, and for each x ∈ A,

𝒟x
Y(p), p Y(x) ‖ 𝒟x

N(p)

𝒟x Y(p), pY(x) ‖ 𝒟x
N(p)

𝒟x
Y(p) ‖ 𝒟x

N(p), p N(x)

𝒟x Y(p) ‖ 𝒟x
N(p), pN(x)

where, for 𝛼 ∈ {Y,N, Y

, N}, p𝛼 : A→ Pow({p}) is such that p𝛼(x) = {p} iff x ∈ 𝛼.

(RM𝒟
Σ) for each k-ary connective ©, each sequence X := (x1, . . . , xk) of truth-values of

82

M, each y ̸∈ ©AX, and for a sequence (p1, . . . , pk) of distinct propositional variables,

Θ©,X ,y
Y ‖ Θ©,X ,y

N

Θ©,X ,yY ‖ Θ©,X ,y
N

©X
y

where each Θ©,x1,...,xk ,y
𝛼 :=

⋃︀
1≤i≤k 𝒟xi

𝛼 (pi) ∪ 𝒟y
𝛼(©(p1, . . . , pk)).

(RM𝒟
T) for each X ̸∈ T(A) and an arbitrary family {px}x∈X of distinct propositional

variables, ⋃︀
x∈X 𝒟x

Y(px) ‖
⋃︀

x∈X 𝒟x
N(px)⋃︀

x∈X 𝒟x Y(px) ‖
⋃︀

x∈X 𝒟x
N(px)

Observe that, if the Σ-nd-B-matrix M in the definition above is total, the last

group of rule schemas, (RM𝒟
T), can be ignored, as T(A) = Pow(LΣ(P)). With respect to

the size of the produced system when M is finite, we have the groups (RM𝒟
∃) and (RM𝒟

T)

having an amount of rule schemas exponential in the number of values of M, while the

groups (RM𝒟
D) and (RM𝒟

Σ) have a size polynomial in the number of values of M.

Example 82. Let us illustrate the above groups of rule schemas with a three-valued

nd-B-matrix M := ⟨A,Y,N⟩ over a signature containing but one unary connective ¬ and

two binary connectives ∧ and →. We let A := {f ,⊥, t}, Y := {⊥, t} and N := {⊥, f}.

Moreover, the interpretations of the said connectives are given by the following truth-tables:

¬A

f t,⊥
⊥ ∅
t f

∧A f ⊥ t

f f ∅ f
⊥ ∅ ∅ ∅
t f ∅ t,⊥

→A f ⊥ t

f t,⊥ ∅ t,⊥
⊥ ∅ ∅ ∅
t f ∅ t,⊥

Before going into the groups of rule schemas, the axiomatization algorithm requires M

to be sufficiently expressive. It turns out that the propositional variable p is enough to

separate every pair of distinct truth-values, since:

• t ∈ Y and f ∈

Y;

83

• ⊥ ∈ Y and f ∈

Y; and

• ⊥ ∈ N and t ∈ N.

A discriminator 𝒟 for M, then, is:

x 𝒟x
Y 𝒟x Y 𝒟x

N 𝒟x
N

f ∅ p ∅ ∅
⊥ p ∅ p ∅
t p ∅ ∅ p

Having all set, we begin with the group of rule schemas (RM𝒟
∃). Let us organize the choices

we have in a table, in which each row corresponds to a subset of {f ,⊥, t} and the last

column indicates the produced rule schemas (we use “—” to indicate that no choice is

available or no rule schema is produced):

X1 X0 (𝒟̇X1Y, 𝒟̇X1
N) (𝒟̇X0

Y , 𝒟̇X0
N)

𝒟̇X1Y ‖ 𝒟̇X1
N

𝒟̇X0
Y ‖ 𝒟̇X0

N

∅ {t, f ,⊥} (∅,∅) — —
{f} {⊥, t} ({p},∅) ({p}, {p}) p ‖

p ‖ p
{t} {f ,⊥} (∅, {p}) — —
{⊥} {f , t} — — —
{f ,⊥} {t} — ({p},∅) —
{t,⊥} {f} — — —
{f , t} {⊥} ({p}, {p}) ({p}, {p}) p ‖ p

p ‖ p
{f ,⊥, t} ∅ — (∅,∅) —

Notice that only two rules are produced in (RM𝒟
∃), and that both are instances of (O2).

Now, we produce the rules of the group (RM𝒟
D), this time listing in a table the rule schemas

produced for each truth-value:

84

x
𝒟x

Y(p),p Y(x) ‖ 𝒟x
N(p)

𝒟x Y(p),pY(x) ‖ 𝒟x
N(p)

𝒟x
Y(p) ‖ 𝒟x

N(p),p N(x)

𝒟x Y(p) ‖ 𝒟x
N(p),pN(x)

f p ‖

p ‖

‖

p ‖ p

⊥ p ‖ p

p ‖

p ‖ p

‖ p

t p ‖

p ‖ p

p ‖ p

‖ p

Note that, with the exception of the second rule for the value f , all rule schemas are

instances of (O2). As we will see in Proposition 87, we could have foreseen this in view

of the chosen discriminator.

We proceed now to the schemas of (RM𝒟
Σ), working on the interpretation of each

connective, entry by entry. Below we write one table per connective, in which each row

represents an entry of the respective truth-table and is identified by the input tuple of the

entry in the first column. The second column shows the output of the connective under

the input tuple, and the third column shows the complement of this output with respect to

the set of all truth-values {f ,⊥, t}. Recall from the definition of the schemas in (RM𝒟
Σ)

that one schema is produced per each value outside the output of the input tuple per entry

per connective (that is, those values listed in the third column of the tables below).

(x) ¬A(x) A∖¬A(x) Rule schemas

(f) {⊥,t} {f} ‖

p,¬p ‖
¬f

f

(⊥) ∅ {f ,⊥, t} p ‖ p

¬p ‖
¬⊥f

p,¬p ‖ p,¬p

‖
¬⊥⊥

p,¬p ‖ p

‖ ¬p
¬⊥t

(t) {f} {⊥, t} p,¬p ‖ ¬p

‖ p
¬t

⊥
p,¬p ‖

‖ p,¬p
¬t

t

85

(x , y) ∧A(x , y) A∖∧A(x , y) Rule schemas

(f ,f) {f} {⊥, t} p∧q ‖ p∧q

p,q ‖
∧ff

⊥
p∧q ‖

p,q ‖ p∧q
∧ff

t

(f ,⊥) ∅ {f ,⊥, t} q ‖ q

p,p∧q ‖
∧f⊥

f
q,p∧q ‖ q,p∧q

p ‖
∧f⊥

⊥
q,p∧q ‖ q

p ‖ p∧q
∧f⊥

t

(f ,t) {f} {⊥, t} q,p∧q ‖ p∧q

p ‖ q
∧ft

⊥
q,p∧q ‖

p ‖ q,p∧q
∧ft

t

(⊥,f) ∅ {f ,⊥, t} p ‖ p

q,p∧q ‖
∧⊥f

f
p,p∧q ‖ p,p∧q

q ‖
∧⊥f

⊥
p,p∧q ‖ p

q ‖ p∧q
∧⊥f

t

(⊥,⊥) ∅ {f ,⊥, t} p,q ‖ p,q

p∧q ‖
∧⊥⊥

f
p,q,p∧q ‖ p,q,p∧q

‖
∧⊥⊥

⊥
p,q,p∧q ‖ p,q

‖ p∧q
∧⊥⊥

t

(⊥,t) ∅ {f ,⊥, t} p,q ‖

p∧q ‖ q
∧⊥t

f
p,q,p∧q ‖ p∧q

‖ q
∧⊥t

⊥
p,q,p∧q ‖

‖ q,p∧q
∧⊥t

t

(t,f) {f} {⊥, t} p,p∧q ‖ p∧q

q ‖ p
∧tf

⊥
p,p∧q ‖

q ‖ p,p∧q
∧tf

t

(t,⊥) ∅ {f ,⊥, t} p,q ‖ q

p∧q ‖ p
∧t⊥

f
p,q,p∧q ‖ q,p∧q

‖ p
∧t⊥

⊥
p,q,p∧q ‖ q

‖ p,p∧q
∧t⊥

t

(t,t) {⊥, t} {f} p,q ‖

p∧q ‖ p,q
∧tt

f

86

(x , y) →A(x , y) A∖→A(x , y) Rule schemas

(f ,f) {⊥, t} {f} ‖

p,q,p→q ‖
→ff

f

(f ,⊥) ∅ {f ,⊥, t} q ‖ q

p,p→q ‖
→f⊥

f
q,p→q ‖ q,p→q

p ‖
→f⊥

⊥
q,p→q ‖ q

p ‖ p→q
→f⊥

t

(f ,t) {⊥, t} {f} q ‖

p,p→q ‖ q
→ft

f

(⊥,f) ∅ {f ,⊥, t} p ‖ p

q,p→q ‖
→⊥f

f
p,p→q ‖ p,p→q

q ‖
→⊥f

⊥
p,p→q ‖ p

q ‖ p→q
→⊥f

t

(⊥,⊥) ∅ {f ,⊥, t} p,q ‖ p,q

p→q ‖
→⊥⊥

f
p,q,p→q ‖ p,q,p→q

‖
→⊥⊥

⊥

p,q,p→q ‖ p,q

‖ p→q
→⊥⊥

t

(⊥,t) ∅ {f ,⊥, t} p,q ‖ p

p→q ‖ q
→⊥t

f
p,q,p→q ‖ p,p→q

‖ q
→⊥t

⊥

p,q,p→q ‖ p

‖ q,p→q
→⊥t

t

(t,f) {f} {⊥, t} p,p→q ‖ p→q

q ‖ p
→tf

⊥
p,p→q ‖

q ‖ p,p→q
→tf

t

(t,⊥) ∅ {f ,⊥, t} p,q ‖ q

p→q ‖ p
→t⊥

f
p,q,p→q ‖ q,p→q

‖ p
→t⊥

⊥

p,q,p→q ‖ q

‖ p,p→q
→t⊥

t

(t,t) {⊥, t} {f} p,q ‖

p→q ‖ p,q
→tt

f

Finally, we produce the schemas of the group (RM𝒟
T), which must be nonempty,

since there are empty outputs in some entries of the interpretations of M. We note that

any subset of {f ,⊥, t} containing the value ⊥ induce a nontotal subcomponent of M.

In other words, we have T(A) = {∅, {f}, {t}, {f , t}}. Let p := pf , q := p⊥ and r := pt.

We list the subsets not in T(A) in the table below, together with the corresponding rule

schemas:

87

X ̸∈ T(A)

⋃︀
x∈X 𝒟x

Y(px) ‖
⋃︀

x∈X 𝒟x
N(px)⋃︀

x∈X 𝒟x Y(px) ‖
⋃︀

x∈X 𝒟x
N(px)

{⊥} q ‖ q

‖

{f ,⊥} q ‖ q

p ‖

{t,⊥} q,r ‖ q

‖ r

{f ,⊥, t} q,r ‖ q

p ‖ r

The calculus RM
𝒟 , then, consists of all rule schemas in the last column of the above tables.

The next theorem proves that the system RM
𝒟 described in Definition 81 is sound

for M.

Theorem 83. If 𝒟 is a discriminator for a Σ-nd-B-matrix M := ⟨A,Y,N⟩, then the

Set2-Set2 calculus RM
𝒟 is sound with respect to M.

Proof. We will show that any M-valuation that constituted a countermodel for a schema

of RM
𝒟 would lead to an absurd. The argument will cover each of the groups of rule

schemas of the concerned calculus.

(RM𝒟
∃) Consider a schema s :=

𝒟̇X1Y ‖ 𝒟̇X1
N

𝒟̇X0
Y ‖ 𝒟̇X0

N

, for some X1 ⊆ A and some choice of (𝒟̇X0
Y , 𝒟̇X0

N)

and (𝒟̇X1Y, 𝒟̇X1
N). Suppose that s does not hold in M, with the M-valuation v witnessing

this fact. We will prove that, given a propositional variable p, v(p) ̸= x , for all x ∈ A,

an absurd. For that purpose, let x ∈ A. In case x ∈ X1, there must be a separator S

in 𝒟x
𝛼̃, for some 𝛼 ∈ {Y,N}, such that v(S(p)) ∈ 𝛼. By Lemma 79, this implies that

v(p) ̸= x . The reasoning is similar in case x ∈ X0.

(RM𝒟
D) Let p ∈ P and x ∈ A be such that x ∈ 𝛼, with 𝛼 ∈ {Y,

Y

}. Suppose that there

is an M-valuation v under which the schema
𝒟x

Y(p),p Y(x) ‖ 𝒟x
N(p)

𝒟x Y(p),pY(x) ‖ 𝒟x
N(p)

does not hold. Then,

v(p𝛼(x)) ⊆ 𝛼̃, and thus, since x ∈ 𝛼, it follows that v(p) ∈ 𝛼̃. On the other hand,

since v[𝒟x
𝛼(p)] ⊆ 𝛼 and v[𝒟x

𝛼̃(p)] ⊆ 𝛼̃ for each 𝛼 ∈ {Y,N}, by Lemma 79 we have

v(p) = x , a contradiction. The proof for the other schema is analogous.

88

(RM𝒟
Σ) Let © ∈ Σk , X := {xi}k

i=1 be a family of truth-values of M, y ̸∈ ©A(x1, . . . , xk)

and let (p1, . . . , pk) be a sequence of distinct propositional variables. Suppose the

schema
Θ©,X,y

Y ‖ Θ©,X,y
N

Θ©,X,yY ‖ Θ©,X,y
N

does not hold under v. By Lemma 79, we have that v(pi) = xi ,

for all 1 ≤ i ≤ k, and v(©(p1, . . . , pk)) = y. It follows that y = v(©(p1, . . . , pk)) ∈

©A(v(p1), . . . , v(pk)) = ©A(x1, . . . , xk), contradicting one of the assumptions.

(RM𝒟
T) Assume that X ̸∈ T(A) and let {px}x∈X be a family of distinct propositional

variables. If the schema
⋃︀

x∈X 𝒟x
Y(px) ‖

⋃︀
x∈X 𝒟x

N(px)⋃︀
x∈X 𝒟x Y(px) ‖

⋃︀
x∈X 𝒟x

N(px)
does not hold under an M-valuation

v, then Lemma 79 guarantees that v(px) = x for each x ∈ X . Hence, since px ∈ P

for each x ∈ X , we have X ⊆ v[LΣ(P)] ∈ T(A), contradicting the assumption.

In what follows, we fix a sufficiently expressive Σ-nd-B-matrix M := ⟨A,Y,N⟩,

a discriminator 𝒟 for M and treat each of the groups of rule schemas (RM𝒟
∃), (RM𝒟

D),

(RM𝒟
Σ) and (RM𝒟

T) as Set2-Set2 systems by themselves, that is, each one inducing its

own B-consequence relation. We proceed now to prove that RM
𝒟 is complete for M and

𝒟◁▷-analytic. In this direction, we shall make use of Lemma 84 below, which contains

four items, each one, once again, referring to a group of schemas of RM
𝒟 . The statement

seems complicated, but its formulation is oriented in order to facilitate the completeness

theorem presented right after. Intuitively, given a B-statement s and assuming that there

is no 𝒟◁▷-analytic proof of it in RM
𝒟 , items (1) and (2) give us the resources to define a

mapping f : subf(s)→ A that, by items (3) and (4), can be extended, via the property

of effectiveness of Σ-nd-B-matrices, to a countermodel for s in M.

Lemma 84. For all B-statements s of the form
(︁
Ωc

SΩ
c
S

ΩS Ω S

)︁
:

1. if Ωc
S

ΩS
×| Ω

c
S

Ω S

𝒟◁▷

RM𝒟
∃

, then, for all 𝜙 ∈ subf(s), there is an x ∈ A such that 𝒟x
𝛼(𝜙) ⊆ Ω𝛽

and 𝒟x
𝛼̃(𝜙) ⊆ Ωc

𝛽, for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)};

2. if Ωc
S

ΩS
×| Ω

c
S

Ω S

𝒟◁▷

RM𝒟
D

, then, for every 𝜙 ∈ subf(s) and x ∈ A such that 𝒟x
𝛼(𝜙) ⊆ Ω𝛽 and

𝒟x
𝛼̃(𝜙) ⊆ Ωc

𝛽, we have x ∈ 𝛼 iff 𝜙 ∈ Ω𝛽, for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)};

89

3. if Ωc
S

ΩS
×| Ω

c
S

Ω S

𝒟◁▷

RM𝒟
Σ

, then for every © ∈ Σk, 𝜙 := ©(𝜙1, . . . , 𝜙k) ∈ subf(s) and x1, . . . , xk ∈

A with 𝒟xi
𝛼 (𝜙i) ⊆ Ω𝛽 and 𝒟xi

𝛼̃ (𝜙i) ⊆ Ωc
𝛽, for each 1 ≤ i ≤ k and (𝛼, 𝛽) ∈

{(Y, S), (N, S)}, we have that 𝒟y
𝛼(𝜙) ⊆ Ω𝛽 and 𝒟y

𝛼̃(𝜙) ⊆ Ωc
𝛽 for each (𝛼, 𝛽) ∈

{(Y, S), (N, S)} implies y ∈ ©A(x1, . . . , xk);

4. if Ωc
S

ΩS
×| Ω

c
S

Ω S

𝒟◁▷

RM𝒟
T

, then {x ∈ A | 𝒟x
𝛼(𝜙) ⊆ Ω𝛽 and 𝒟x

𝛼̃(𝜙) ⊆ Ωc
𝛽,

for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)} and 𝜙 ∈ subf(s)} ∈ T(A).

Proof. We prove below the contrapositive version of each item.

1. Assume that for some 𝜙 ∈ subf(s) there is no x ∈ A such that𝒟x
𝛼(𝜙) ⊆ Ω𝛽 and 𝒟x

𝛼̃(𝜙) ⊆

Ωc
𝛽, for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}. Consider then the set

X1 := {x ∈ A | 𝒟x Y∩ ΩS ̸= ∅ or 𝒟x
N∩ Ω S̸= ∅}

and let X0 := A∖X1. Define, for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}, the set 𝒟̇X1
𝛼̃ by choosing,

for each x ∈ X1, a formula S such that S(𝜙) ∈ 𝒟x
𝛼̃ ∩ Ω𝛽, when present. Similarly,

define the set 𝒟̇X0
𝛼 by choosing, for each x ∈ X0, a formula S such that 𝒟x

𝛼(𝜙) ∩ Ωc
𝛽,

when present. Notice that the construction of X1 guarantees the existence of the

pairs (𝒟̇X0
Y , 𝒟̇X0

N) and (𝒟̇X1Y, 𝒟̇X1
N). Since 𝒟̇X0

𝛼 (𝜙) ⊆ Ωc
𝛽 ∩ gsubf𝒟◁▷

(s) and 𝒟̇X1
𝛼̃ (𝜙) ⊆

Ω𝛽 ∩ gsubf𝒟◁▷

(s) for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}, we have Ωc
S

ΩS
|Ω

c
S

Ω S

𝒟◁▷

RM𝒟
∃

.

2. Suppose that, for some 𝜙 ∈ subf(s) and x ∈ A such that 𝒟x
𝛼(𝜙) ⊆ Ω𝛽 and 𝒟x

𝛼̃(𝜙) ⊆

Ωc
𝛽 for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}, we have either (a): x ∈ 𝛾 and 𝜙 ̸∈ Ω𝛿 (i.e.

𝜙 ∈ Ωc
𝛿) or (b): x ̸∈ 𝛾 and 𝜙 ∈ Ω𝛾, for some (𝛾, 𝛿) ∈ {(Y, S), (N, S)}. Notice

that, for any (𝛼, 𝛽) ∈ {(Y, S), (N, S)}, we have 𝒟x
𝛼(𝜙) ⊆ Ω𝛽 ∩ gsubf𝒟◁▷

(s) and

𝒟x
𝛼̃(𝜙) ⊆ Ωc

𝛽 ∩ gsubf𝒟◁▷

(s), implying that, in any of the cases (a) or (b), we have

(𝒟x
𝛾(p) ∪ p𝛾(p))(𝜙) ⊆ Ω𝛿 ∩ gsubf𝒟◁▷

(s) and (𝒟x
𝛾(p) ∪ p𝛾(p))(𝜙) ⊆ Ωc

𝛿 ∩ gsubf𝒟◁▷

(s).

Thus, we have Ωc
S

ΩS
|Ω

c
S

Ω S

𝒟◁▷

RM𝒟
D

, by an instance of one of the schemas of (RM𝒟
D) and

property (D2).

90

3. Suppose there is a connective © ∈ Σk , a formula 𝜙 = ©(𝜙1, . . . , 𝜙k) ∈ subf(s), a

sequence (x1, . . . , xk) of truth-values with 𝒟xi
𝛼 (𝜙i) ⊆ Ω𝛽 and 𝒟xi

𝛼̃ (𝜙i) ⊆ Ωc
𝛽, for each

1 ≤ i ≤ k and (𝛼, 𝛽) ∈ {(Y, S), (N, S)}, and some y ̸∈ ©A(x1, . . . , xk) such that

𝒟y
𝛼(𝜙) ⊆ Ω𝛽 and 𝒟y

𝛼̃(𝜙) ⊆ Ωc
𝛽 for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}. Then

⋃︀k
i=1𝒟xi

𝛼 (𝜙i)∪

𝒟y
𝛼(𝜙) ⊆ Ω𝛽 ∩ gsubf𝒟◁▷

(s) and
⋃︀k

i=1𝒟
xi
𝛼̃ (𝜙i) ∪ 𝒟y

𝛼̃(𝜙) ⊆ Ωc
𝛽 ∩ gsubf𝒟◁▷

(s) for each

(𝛼, 𝛽) ∈ {(Y, S), (N, S)}, and thus we have Ωc
S

ΩS
|Ω

c
S

Ω S

𝒟◁▷

RM𝒟
Σ

.

4. Let X := {x ∈ A | 𝒟x
𝛼(𝜙) ⊆ Ω𝛽 and 𝒟x

𝛼̃(𝜙) ⊆ Ωc
𝛽, for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}

and 𝜙 ∈ subf(s)}. For each x ∈ X , pick a formula 𝜙x ∈ gsubf𝒟◁▷

(s) such that

𝒟x
𝛼(𝜙x) ⊆ Ω𝛽 and 𝒟x

𝛼̃(𝜙x) ⊆ Ωc
𝛽, for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}. Easily, then,

for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}, we have
⋃︀

x∈X 𝒟x
𝛼(𝜙) ⊆ Ω𝛽 ∩ gsubf𝒟◁▷

(s) and⋃︀
x∈X 𝒟x

𝛼̃(𝜙) ⊆ Ωc
𝛽 ∩ gsubf𝒟◁▷

(s), and so Ωc
S

ΩS
|Ω

c
S

Ω S

𝒟◁▷

RM𝒟
T

if X ̸∈ T(A).

Theorem 85. The Set2-Set2 system RM
𝒟 is complete for M and 𝒟◁▷-analytic.

Proof. Let s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
be a B-statement and suppose that (a): Φ N

ΦY
×| Φ Y

ΦN

𝒟◁▷

RM
𝒟

. Our goal

is to build an M-valuation witnessing that Φ N
ΦY
×| Φ Y

ΦN
M . From (a), by (C2), we have that

(b): there are ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc
Nsuch that Ωc

S
ΩS
×| Ω

c
S

Ω S

𝒟◁▷

RM
𝒟

. Consider then

a mapping f : subf(s) → A with (c): f (𝜙) ∈ 𝛼 iff 𝜙 ∈ Ω𝛽, for (𝛼, 𝛽) ∈ {(Y, S), (N, S)},

whose existence is guaranteed by items (1) and (2) of Lemma 84. Notice that items (3) and

(4) of this same lemma imply, respectively, that f (©(𝜙1, . . . , 𝜙k)) ∈ ©A(f (𝜙1), . . . , f (𝜙k))

for every ©(𝜙1, . . . , 𝜙k) ∈ subf(s), and f (subf(s)) ∈ T(A). Hence, f may be extended to

an M-valuation v, and, from (b) and (c), we have v(Φ𝛼) ⊆ 𝛼 for each 𝛼 ∈ {Y,N,

Y

, N},

so Φ N
ΦY
×| Φ Y

ΦN
M .

The proof-search algorithm described in Section 4.3 makes the axiomatization

procedure just presented even more attractive, since this procedure delivers a 𝒟◁▷–

analytic calculus for any finite and sufficiently expressive Σ-nd-B-matrix M, where 𝒟 is a

discriminator for M. It follows then that Proof-Search is a proof-search algorithm for

91

such axiomatization running in at most exponential time in the size of the B-statement of

interest. For experimenting with the axiomatization procedure and searching for proofs

over the generated calculus, one can make use of the implementation that may be found

at https://github.com/greati/logicantsy. See Appendix A for detailed instructions.

We should also emphasize that, by Theorem 74 and the axiomatization procedure given

in Definition 81, we have:

Corollary 86. Any finite and sufficiently expressive Σ-nd-B-matrix M whose induced

axiomatization contains only rules with at most one succedent is decidable in polynomial

time.

From this result, we obtain immediately that, in view of the finite and analytic

Set2-Set2 system presented in Example 56, which was produced using the axiomatization

algorithm defined and studied in the present section, the logic of information sources

introduced in [4] and presented in Example 17 is decidable in polynomial time. After

noticing this fact, we should observe that, actually, this result could already have been

obtained in the original, one-dimensional presentation of this logic, in view of the algorithm

for axiomatizing in Set-Set sufficiently expressive matrices [43]. We have no reasons to

believe, however, that this complexity result should be preserved in general when passing

from two to one dimension.

5.3. Simplifying the axiomatization

The axiomatization presented in Definition 81 can be considerably simplified

by some basic streamlining procedures. Before introducing them, we provide a simple

result establishing a sufficient condition for the group of rule schemas (RM𝒟
D) to contain

only instances of overlap. We will see in a moment that, in this case, this group may be

ignored.

92

https://github.com/greati/logicantsy

Proposition 87. Let 𝒟 be a discriminator for a sufficiently expressive Σ-nd-B-matrix

M := ⟨A,Y,N⟩ and p ∈ P. For all 𝛼 ∈ {Y,N, Y

, N}, if p ∈ 𝒟x
𝛼(p) whenever x ∈ 𝛼, then

the schemas in (RM𝒟
D) are all instances of property (O2).

Proof. Suppose that (a): for all 𝛼 ∈ {Y,N, Y

, N}, if x ∈ 𝛼, then p ∈ 𝒟x
𝛼(p). Let us consider

the schema
𝒟x

Y(p),p Y(x) ‖ 𝒟x
N(p)

𝒟x Y(p),pY(x) ‖ 𝒟x
N(p)

and the proof for the other schema will be analogous. By

cases, suppose that (b): x ∈ Y. Then, pY(x) = {p}, and, by (a) and (b), we have

p ∈ 𝒟x
Y(p), thus the schema under concern is an instance of (O2). The case x ∈ Yis

similar.

Example 88. The discriminators presented in Example 78 satisfy the precondition of

the previous proposition, thus, for each of them, the schemas in (RM𝒟
D) are all instances

of property (O2).

We now define three simple streamlining operations for finite and finitary Set2-

Set2 systems and then prove that they preserve the induced B-consequence, that is,

they preserve adequacy. Moreover, we show that, when the input is Θ-analytic, the

result is also Θ-analytic. It will also be made clear that, in view of the finitariness and

finiteness hypotheses, such procedures actually describe algorithms having straightforward

implementations.

Definition 89. Given two rule instances ΦY ‖ ΦN

Φ Y‖ Φ N
and ΨY ‖ ΨN

Ψ Y‖ Ψ N
, we say that the latter is

a dilution of the former in case Φ𝛼 ⊆ Ψ𝛼 for each 𝛼 ∈ {Y,

Y

,N, N}. Equivalently, we

may say that the former is a subinstance of the latter. This same terminology applies to

rule schemas (using, in this case, subschema instead of subinstance). Given two rules of

inference R1,R2, we write R1 ≥ R2 whenever every rule instance in R1 is a dilution of

an instance of R2.

Definition 90. Let R be a finite and finitary Set2-Set2 system.

• Let O(R) be the system resulting from removing from the rules of inference of R all

rules of inference whose instances are all cases of (O2).

93

• Consider an enumeration R1, . . . ,Rn of the rules of inference of R. Let D(R) :=

Dn(R), where

D1(R) := R

Di+1(R) :=

⎧⎪⎪⎨⎪⎪⎩
Di(R)∖{Ri} if Ri ≥ Rj , for some Rj ∈ Di(R)

Di(R) otherwise

In short, operation D removes the rules of inference of R that are dilutions of other

rules.

• Define the following operations on pairs of rule schemas:

cS(s1, s2) :=

⎧⎪⎪⎨⎪⎪⎩
ΦY ‖ ΦN

Φ Y‖ Φ N
if s1 =

ΦY,𝜙 ‖ ΦN

Φ Y ‖ Φ N
and s2 =

ΦY ‖ ΦN

Φ Y,𝜙 ‖ Φ N

s1 otherwise

c S(s1, s2) :=

⎧⎪⎪⎨⎪⎪⎩
ΦY ‖ ΦN

Φ Y‖ Φ N
if s1 =

ΦY ‖ ΦN,𝜙

Φ Y‖ Φ N
and s2 =

ΦY ‖ ΦN

Φ Y‖ Φ N,𝜙

s1 otherwise

Then, set

C (R) := R ∪ {Rc𝛼(s1,s2) | Rs1 ,Rs2 ∈ R, 𝛼 ∈ {S, S}}

and

𝒞(R) :=
⋃︁
i∈𝜔

C i(R)

The intended streamlining operation 𝒞*, defined to produce some effect only in systems

containing schematic rules (which are the ones we are mostly interested in the present

work), consists in applying 𝒞 to obtain every rule schema resulting from cut for

formulas according to cS and c S, and then removing the dilutions with D:

𝒞* := D ∘ 𝒞

94

Proposition 91. Operations O, D and 𝒞* defined above preserve the B-consequence

relation induced by the input system, as well as Θ-analyticity.

Proof. Let R be a finite and finitary Θ-analytic Set2-Set2 system. Operation O clearly

preserves the B-consequence relation induced by R as a leaf node can be easily seen

to constitute a proof of an instance of overlap, and, by definition, O(R) ⊆ R. Also,

any application of an instance of (O2) in a Θ-analytic R-proof can be removed, as this

application just produces redundancy by creating a node with the same label as before,

and such modification does not affect Θ-analyticity.

In the case of dilution, any application of a dilution of a rule instance r in a

Θ-analytic R-proof may be replaced by an application of r itself, just by removing the

nodes resulting from adding formulas not in the succedent of r . In this process, no new

formula is introduced, so the proof remains Θ-analytic. Also, by definition, we have

D(R) ⊆ R.

Let us now analyze 𝒞*. By the Kleene’s fixpoint theorem, 𝒞(R) is a fixpoint of

C . As the rules of inference have finite component sets and cS and c Sproduce rules that

have the same or smaller component sets as their inputs, this fixpoint is finite and thus

may be generated after a finite number of steps. It remains to prove that ·
· |

·
· R = ·

· |
·
· 𝒞(R)

and that 𝒞(R) is Θ-analytic, which follows if we prove that ·
· |

·
· R = ·

· |
·
· C n(R) and

that C n(R) is Θ-analytic for all n ∈ 𝜔. By induction on n, the base case (n = 0) is

obvious and, by assuming that ·
· |

·
· R = ·

· |
·
· C k(R) and C k(R) is Θ-analytic, we just have

to show that ·
· |

·
· C k(R) ⊇ ·

· |
·
· C k+1(R) and that C k+1(R) is Θ-analytic. For that effect,

suppose that Φ N
ΦY
|Φ Y

ΦN
C k+1(R) , witnessed by an R-proof t. We will show by induction on the

structure of t that any application of an instance of s := cS(s1, s2), with Rs1 ,Rs2 ∈ C k(R),

can be replaced by applications of rules of inference of C k(R) (the case of c Swill be

analogous). In the base case, t is a (Φ Y,Φ N)-closed leaf node, so no rule instance was

applied and hence it is a proof of the concerned statement in C k(R). The case when t is a

95

discontinued node can be treated as the case of expanded nodes explained next. Suppose

that t = [ΦY ‖ΦN | r | t1, . . . , tk], where r is an instance of cS(s1, s2) = s, Rs ̸∈ C k(R),

s1, s2 ∈ C k(R), and each ti is a (Φ Y,Φ N)-closed derivation in C k(R). We may assume that

r1 =
ΓY,𝜙 ‖ ΓN

Γ Y ‖ Γ N
and r2 =

ΓY ‖ ΓN

Γ Y,𝜙 ‖ Γ N
are instances of s1 and s2, respectively, and r =

ΓY ‖ ΓN

Γ Y‖ Γ N
.

As r was applied to produce t, we have ΓY ⊆ ΦY and ΓN ⊆ ΦN, thus r2 could have been

applied instead. In this case, the only difference would be that a new node would appear

in the derivation, having the label (ΦY ∪ {𝜙},ΦN) (the other branches would be closed

by the trees ti). To the new node, we could apply r1 and the resulting branches could

be closed by the R-derivations ti , but with a little adjustment in the root label, allowed

due to (D2). The result is a new tree consisting of a proof in C k(R) of the concerned

Set2-Set2 statement. As C k(R) is Θ-analytic by the induction hypothesis, there is a

Θ-analytic proof in C k(R) of the Set2-Set2 statement under concern, which is also a

Θ-analytic proof in C k+1(R), thus C k+1(R) is also Θ-analytic, and we are done.

Example 92. We proceed now to simplify the system produced in Example 82 using the

three operations just defined. First of all, by operation O, we remove all rule schemas

of group (RM𝒟
∃) and all of group (RM𝒟

D), with the exception of ‖

p ‖ p
E⊥. Then, by D,

we remove all schemas of group (RM𝒟
T) but q ‖ q

‖
E⊤, as well as all schemas in the

group (RM𝒟
Σ) originated from an input tuple containing ⊥, since they constitute dilutions

of the latter. That is, the resulting schemas are:

(x) ¬A(x) A∖¬A(x) Rule schemas

(f) {⊥,t} {f} ‖

p,¬p ‖
¬f

f

(t) {f} {⊥, t} p,¬p ‖ ¬p

‖ p
¬t

⊥
p,¬p ‖

‖ p,¬p
¬t

t

96

(x , y) ∧A(x , y) A∖∧A(x , y) Rule schemas

(f ,f) {f} {⊥, t} p∧q ‖ p∧q

p,q ‖
∧ff

⊥
p∧q ‖

p,q ‖ p∧q
∧ff

t

(f ,t) {f} {⊥, t} q,p∧q ‖ p∧q

p ‖ q
∧ft

⊥
q,p∧q ‖

p ‖ q,p∧q
∧ft

t

(t,f) {f} {⊥, t} p,p∧q ‖ p∧q

q ‖ p
∧tf

⊥
p,p∧q ‖

q ‖ p,p∧q
∧tf

t

(t,t) {⊥, t} {f} p,q ‖

p∧q ‖ p,q
∧tt

f

(x , y) →A(x , y) A∖→A(x , y) Rule schemas

(f ,f) {⊥, t} {f} ‖

p,q,p→q ‖
→ff

f

(f ,t) {⊥, t} {f} q ‖

p,p→q ‖ q
→ft

f

(t,f) {f} {⊥, t} p,p→q ‖ p→q

q ‖ p
→tf

⊥
p,p→q ‖

q ‖ p,p→q
→tf

t

(t,t) {⊥, t} {f} p,q ‖

p→q ‖ p,q
→tt

f

Finally, we may close the resulting collections of schemas under cut and remove the

resulting dilutions. In the case of ¬, we may perform a single cut, between schemas ¬t
⊥

and ¬t
t. The resulting schemas are thus:

‖

p,¬p ‖
¬f

f
p,¬p ‖

‖ p
c S(¬t

⊥,¬t
t)

In the case of ∧, we may perform three cuts, resulting in the following schemas:

p ∧ q ‖

p, q ‖
c S(∧ff

⊥,∧ff
t)

q, p ∧ q ‖

p ‖ q
c S(∧ft

⊥,∧ft
t)

p, p ∧ q ‖

q ‖ p
c S(∧tf

⊥ ,∧tf
t)

p, q ‖

p ∧ q ‖ p, q
∧tt

f

97

Finally, in the case of →, we may cut schemas →tf
⊥ and →tf

t , and no more. The resulting

schemas are thus:

‖

p, q, p → q ‖
→ff

f
q ‖

p, p → q ‖ q
→ft

f

p, p → q ‖

q ‖ p
c S(→tf

⊥ ,→tf
t)

p, q ‖

p → q ‖ p, q
→tt

f

By Proposition 91, then, the resulting system, with 12 rules, is (still) a {p}-analytic

axiomatization of M.

We close with other two streamlining procedures. The first one can reduce the

number of formulas in a rule schema that has a derivable proper subschema. The second

one can reduce the amount of schemas by deleting those schemas which are derivable

from the other rules of inference in the system under simplification. In the first case,

Θ-analyticity is preserved, while, in the latter, it is preserved in general when the deleted

schemas are provable by ∅-analytic proofs (that is, proofs where only subformulas of the

formulas in the schemas appear in the node labels).

Proposition 93. Let s1 be a rule schema of R and a proper dilution of a rule schema

s2. If s2 is derivable in R, then we may replace s2 for s1 in R preserving the induced

B-consequence relation. In other words, ·
· |

·
· R = ·

· |
·
· R

′ , where R′ := R∖{Rs1} ∪ {Rs2}.

Moreover, this transformation preserves Θ-analyticity.

Proof. For the first part, note that s1 is derivable in R′ since it is a dilution of s2, thus
·
· |

·
· R

′ = ·
· |

·
· R∪{Rs2

} by Proposition 39. Moreover, since s2 is derivable in R, we have
·
· |

·
· R∪{Rs2

} = ·
· |

·
· R again by Proposition 39. Thus, ·

· |
·
· R = ·

· |
·
· R

′ . For the second part,

suppose that R is Θ-analytic. We want to show that R′ is also Θ-analytic. Suppose

that s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
is provable in R′. Then it is provable in R by a Θ-analytic R-proof t.

In this proof, we may replace applications of s1 by applications of s2 (see the proof of

98

Proposition 91 above with respect to operation D), and this will constitute a Θ-analytic

proof of s in R′.

Proposition 94. If s1 is derivable in R′ := R∖{Rs1}, then ·
· |

·
· R = ·

· |
·
· R

′ . Moreover, if

there is a ∅-analytic proof witnessing the latter and R is Θ-analytic, then R′ is Θ-analytic.

Proof. For the first part, refer to Proposition 39. For the second part, assume that R is

Θ-analytic and that there is a ∅-analytic R′-proof ts1 of s1. Suppose that s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
is provable in R′. Then it is provable in R by a Θ-analytic R-proof t. In case in t no

application of an instance of s1 was employed, we are done. Otherwise, use the procedure

described in the proof of Proposition 39 to replace applications of instances of s1 in t

by subtrees of ts1 . The fact that ts1 is ∅-analytic guarantees that the resulting tree is

Θ-analytic, as desired.

Example 95. Let us see if the system provided in Example 92 can be further simplified

using the two operations defined above. First notice that the subschema p,¬p ‖

‖
of c S(¬t

⊥,¬t
t)

can be easily derived in the system:

p,¬p ‖

‖ p

*
E⊤

c S(¬t
⊥,¬t

t)

Therefore, by Proposition 93, we may replace it for c S(¬t
⊥,¬t

t). We end up thus with the

following couple of rules for ¬:

‖

p,¬p ‖
¬1

p,¬p ‖

‖
¬2

99

We try now to do the same for the rules involving ∧. The following trees show, respectively,

that the subschemas p∧q ‖

p ‖
, p∧q ‖

q ‖
and p,q ‖

p∧q ‖
are provable in the system:

p ∧ q ‖

q ‖

‖ q

*
E⊤

p ‖

c S(∧ft
⊥,∧ft

t)
p ‖

c S(∧ff
⊥,∧ff

t)

p ∧ q ‖

q ‖p ‖

‖ p

*
E⊤

q ‖

c S(∧tf
⊥ ,∧tf

t)

c S(∧ff
⊥,∧ff

t)

p, q ‖

‖ q

*
E⊤

‖ p

*
E⊤

p ∧ q ‖

∧tt
f

Note that the schema p∧q ‖

p,q ‖
is now a dilution of one of the derived subschemas and can,

thus, be removed without any harm (equivalently, we could see it as derivable from the

other rule schemas and apply Proposition 94). We get, therefore, the following simplified

100

rules for ∧:

p ∧ q ‖

p ‖
∧1

p ∧ q ‖

q ‖
∧2

p, q ‖

p ∧ q ‖
∧3

Now, for the rules involving →, the following derivations show that the subschemas
‖

p,p→q ‖
, q ‖

p→q ‖
and p,p→q ‖

q ‖
are derivable in the system:

‖

p → q ‖q ‖

‖ q

*
E⊤

p → q ‖p ‖

→ft
f

p ‖

→ff
f

q ‖

‖ q

*
E⊤

p → q ‖p ‖

‖ q

*
E⊤

‖ p

*
E⊤

p → q ‖

→tt
f

→ft
f

p, p → q ‖

‖ p

*
E⊤

q ‖
c S(→tf

⊥ ,→tf
t)

101

As →tt
f is a dilution of q ‖

p→q ‖
, we may remove it, and obtain, after all, these three simple

rules for →:

‖

p, p → q ‖
→1

q ‖

p → q ‖
→2

p → q, p ‖

q ‖
→3

At the end of the day, the obtained system is the same as the one that axioma-

tizes M{t,f}, whose induced B-consequence relation has truth-preserving Classical Logic

inhabiting the t-aspect and falsity-preserving Classical Logic inhabiting the f-aspect. In

other words, the value ⊥ does not play any role in M. Actually, what we have here is a

recipe to produce nd-B-matrices of arbitrary sizes for the same B-consequence relation:

just add new values, and make the interpretations output ∅ whenever these values appear

in the input.

5.4. Extracting a countermodel from a failed proof

attempt

Recall that Proof-Search (Algorithm 4.1) outputs a tree with at least one

open branch when the Set2-Set2 statement s of interest is not provable. From such

branch, one may obtain a partition of gsubf𝒟◁▷

(s) and, by Proposition 84, define a mapping

on subf(s) that extends to an M-valuation. It follows that the discussed algorithm may

easily be adapted so as to deliver a countermodel when s is unprovable. We formalize

and explain this procedure below:

Proposition 96. Let t result from a failed proof search attempt of the B-statement

s :=
(︁
Φ NΦ

Y

ΦY ΦN

)︁
in the system RM

𝒟 using Algorithm 4.1. Then, from t, we may mechanically

extract a countermodel for s in M.

Proof. By Proposition 75, from t we may extract sets ΨS,Ψ S⊆ gsubf𝒟◁▷

(s) such that

102

gsubf𝒟
◁▷
(s)∖Ψ S

ΨS
×| gsubf𝒟

◁▷
(s)∖ΨS

Ψ S
RM

𝒟 . By (C2), then, there are sets ΨS ⊆ ΩS ⊆ (gsubf𝒟◁▷

(s)∖ΨS)c

and Ψ S⊆ Ω S⊆ (gsubf𝒟◁▷

(s)∖Ψ S)
c such that Ωc

S
ΩS
×| Ω

c
S

Ω S
RM

𝒟 . By Lemma 84, item 1, we have

that, for all 𝜙 ∈ subf(s), there is an x𝜙 ∈ A such that (a): 𝒟x𝜙
𝛼 (𝜙) ⊆ Ω𝛽 and 𝒟x𝜙

𝛼̃ (𝜙) ⊆ Ωc
𝛽,

for each (𝛼, 𝛽) ∈ {(Y, S), (N, S)}. Then, for these values, we also have (b): 𝒟x𝜙
Y (𝜙) ⊆ ΨS,

𝒟x𝜙Y(𝜙) ⊆ gsubf𝒟◁▷

(s)∖ΨS, 𝒟x𝜙
N (𝜙) ⊆ Ψ Sand 𝒟x𝜙

N(𝜙) ⊆ gsubf𝒟◁▷

(s)∖Ψ S. That is, by

looking at the sets ΨS and Ψ Sand their complements with respect to gsubf𝒟◁▷

(s), we

are able to find values x𝜙 satisfying (b) and, consequently, satisfying also (a). We can

then just build a countermodel as we did in the proof of Theorem 85, that is, by defining

a value-assignment f : subf(s) → A such that f (𝜙) = x𝜙, for each 𝜙 ∈ subf(s), and

considering its extension to an M-valuation.

Example 97. Let us illustrate the countermodel extraction with a simple example, by

using the simplified system R from Example 95 to extract a countermodel from a failed

attempt of proving s :=
(︁

p
p∧q

)︁
in R. Note that gsubf𝒟◁▷

(s) = {p, q, p ∧ q}. Here is a

failed proof search attempt (notice how the open branch cannot be relevantly expanded by

any other instance a schema of R):

‖ p ∧ q

‖ pp ‖

‖ qq ‖

p ∧ q ‖

*

From the open branch in this tree, we extract the following sets of subformulas: ΨS = {p}

and Ψ S= {p ∧ q, q}. Let us build a value-assignment f : subf(s) → {f ,⊥, t} to each

103

subformula according to the Proposition 96:

• f (p) = t, since 𝒟t
Y(p) = {p} ⊆ ΨS, 𝒟t Y(p) = ∅ ⊆ gsubf𝒟◁▷

(s)∖ΨS, 𝒟t
N(p) = ∅ ⊆ Ψ S

and 𝒟t
N(p) = {p} ⊆ gsubf𝒟◁▷

(s)∖Ψ S.

• f (q) = f , since 𝒟f
Y(q) = ∅ ⊆ ΨS, 𝒟f Y(q) = {q} ⊆ gsubf𝒟◁▷

(s)∖ΨS, 𝒟f
N(q) = ∅ ⊆ Ψ S

and 𝒟f
N(q) = ∅ ⊆ gsubf𝒟◁▷

(s)∖Ψ S.

• f (p ∧ q) = f , since 𝒟f
Y(p ∧ q) = ∅ ⊆ ΨS, 𝒟f Y(p ∧ q) = {p ∧ q} ⊆ gsubf𝒟◁▷

(s)∖ΨS,

𝒟f
N(p ∧ q) = ∅ ⊆ Ψ Sand 𝒟f

N(p ∧ q) = ∅ ⊆ gsubf𝒟◁▷

(s)∖Ψ S.

Clearly, then, f extends to an M-valuation constituting a countermodel for s in M.

104

6. Finite and analytic

two-dimensional systems for

non-finitely axiomatizable logics

Recall that, in [17], based on the seminal results on axiomatizability via Set-Set

H-systems by Shoesmith and Smiley [57], it was proved that any sufficiently expressive

non-deterministic logical matrix M is axiomatizable by a Θ-analytic Set-Set Hilbert-

style system, which is finite whenever M is finite, being Θ a set of separators for the

pairs of truth-values of M. We emphasize that it is essential for the above result the

adoption of Set-Set H-systems, instead of the more restrict Set-Fmla H-systems. In

fact, there are sufficiently expressive nd-matrices that are not finitely axiomatizable by

Set-Fmla H-systems, as is witnessed by the three-valued logics presented in [50] (with

deterministic two-valued matrices this cannot happen [53]), and by a more recent example

in [46], with a simple two-valued non-deterministic matrix. When the nd-matrix at hand

is not sufficiently expressive, we may observe the same phenomenon of not having a finite

axiomatization in terms of Set-Set H-systems, even if the nd-matrix is finite. The first

example (and, to the best of our knowledge, the only one in the current literature) of

this fact appeared in [17], which we reproduce here for later reference:

Example 98. Consider the signature Σ such that Σ1 := {g, h} and Σk := ∅ for all

105

k ̸= 1. Let M := ⟨A, {t}⟩ be a Σ-nd-matrix, with A := {t, f ,⊥} and

gA(x) =

⎧⎪⎪⎨⎪⎪⎩
{t}, if x = ⊥

A, otherwise
hA(x) =

⎧⎪⎪⎨⎪⎪⎩
{f}, if x = f

A, otherwise

This matrix is not sufficiently expressive because there is no separator for the pair (f ,⊥),

and [17] proved that it is not axiomatizable by a finite Set-Set H-system, even though

an infinite Set-Set system that captures it has a quite simple description in terms of

the following schemas:

hi(p)

p, g(p)
, for all i ∈ 𝜔.

In the first section of this chapter, we reveal another example of this same

phenomenon, this time of the known logic of formal inconsistency [20] called mCi. In

the path of proving that this logic is not axiomatizable by a finite Set-Set H-system,

we will show that there are infinitely many LFIs between mbC and mCi, organized in a

strictly increasing chain whose limit is mCi itself. Then, in the subsequent section, we

will show how to obtain a two-dimensional logic inhabited by a (possibly not finitely

based) one-dimensional logic of interest. More than that, the obtained logic will be finitely

axiomatizable in terms of a Set2-Set2 analytic H-system. The only requirements is

that the one-dimensional logic of interest must have an associated semantics in terms

of a finite non-deterministic logical matrix and that this matrix can be combined with

another one through a novel way we will introduce, resulting in a sufficiently expressive

nd-B-matrix (recall Section 5.1). This approach will be, in particular, applied here to

provide the first finite and analytic axiomatization of mCi.

106

6.1. The logic mCi is not finitely axiomatizable in

one dimension

A one-dimensional logic � over Σ is said to be ¬-paraconsistent when we have

p,¬p I q, for p, q ∈ P. Moreover, � is ¬-gently explosive in case there is a collection

○(p) ⊆ LΣ(P) of unary formulas such that, for some 𝜙 ∈ LΣ(P), we have ○(𝜙), 𝜙 I ∅;

○(𝜙),¬𝜙 I ∅, and, for all 𝜙 ∈ LΣ(P), ○(𝜙), 𝜙,¬𝜙 � ∅. We say that � is a logic of

formal inconsistency (LFI) in case it is ¬-paraconsistent yet ¬-gently explosive. In case

○(p) = {∘p}, for ∘ a (primitive or composite) consistency connective, the logic is said

also to be a C-system. In what follows, let ΣmCi be the propositional signature such that

ΣmCi
1 := {¬, ∘}, ΣmCi

2 := {∧,∨,⊃}, and ΣmCi
k := ∅ for all k ̸∈ {1, 2}.

One of the simplest C-systems is the logic mbC, which was first presented

in terms of a Set-Fmla H-system over ΣmCi obtained by extending any Set-Fmla

H-system for positive classical logic (CPL+) with the following pair of axiom schemas:

(em) p ∨ ¬p

(bc1) ∘p⊃(p⊃(¬p⊃q))

The logic mCi, in turn, is the C-system resulting from extending the H-system

for mbC with the following (infinitely many) axiom schemas [47] (the resulting Set-Fmla

H-system is denoted here by ℋmCi):

(ci) ¬∘p⊃(p ∧ ¬p)

(ci)j ∘¬j∘p (for all 0 ≤ j < 𝜔)

A unary connective © is said to constitute a classical negation in a one-dimensional logic

� extending CPL+ in case, for all 𝜙, 𝜓 ∈ LΣ(P), ∅ � 𝜙 ∨ ©(𝜙) and ∅ � 𝜙⊃(©(𝜙)⊃𝜓).

One of the main differences with respect to mbC is that an inconsistency connective

∙ can be defined using the paraconsistent negation, instead of a classical negation, by

setting ∙𝜙 := ¬∘𝜙 [47].

107

Both logics above were presented in [21] in ways other than H-systems: via

tableau systems, via bivaluation semantics and via possible-translation semantics. In

addition, despite not being characterizable by a finite deterministic matrix, as shown by

Marcos in [47], Arnon Avron in [3] presented a characteristic three-valued nd-matrix for

mbC and, in [1], a 5-valued non-deterministic logical matrix for mCi, witnessing the

importance of non-deterministic semantics in the study and applicability of non-classical

logics. Such characterizations allow for the extraction of sequent-style systems for these

logics by the methodologies developed in [4, 5]. Since mCi’s 5-valued nd-matrix will

be useful to us in future sections, we describe it again below for ease of reference, now

expressing the associated interpretations by truth-tables:

Definition 99. Let 𝒱5 := {f ,F , I ,T , t} and Y5 := {I ,T , t}. Define the ΣmCi-matrix

MmCi := ⟨A5,Y5⟩ such that A5 := ⟨𝒱5, ·A5⟩ interprets the connectives of ΣmCi according

to the following (we omit curly braces in the entries of the truth-tables):

∧A5 f F I T t
f f f f f f
F f f f f f
I f f t,I t,I t,I
T f f t,I t,I t,I
t f f t,I t,I t,I

∨A5 f F I T t
f f f t,I t,I t,I
F f f t,I t,I t,I
I t,I t,I t,I t,I t,I
T t,I t,I t,I t,I t,I
t t,I t,I t,I t,I t,I

⊃A5 f F I T t
f t,I t,I t,I t,I t,I
F t,I t,I t,I t,I t,I
I f f t,I t,I t,I
T f f t,I t,I t,I
t f f t,I t,I t,I

¬A5 ∘A5

f t,I T
F T T
I t,I F
T F T
t f T

One might be tempted to apply the axiomatization algorithm of [17] to the finite

non-deterministic logical matrix defined above to obtain a finite and analytic Set-Set

system for mCi. However, it is not obvious at all whether this matrix is sufficiently

expressive or not (we will, in fact, prove that it is not). We will show now that mCi

108

is actually axiomatizable neither by a finite Set-Fmla H-system (first part), nor by a

finite Set-Set H-system (second part); that is, it was not by chance that ℋmCi has

been presented with infinitely many rule schemas. Before proceeding to the first part, we

note that it is well-known that the collection of all standard consequence relations over

a fixed signature constitutes a complete lattice under set-theoretical inclusion. Given a

set C of such relations, we will denote by
⨆︀

C its supremum in the latter lattice. We

then rely on the following general result for the first part:

Theorem 100 ([64], Theorem 2.2.8, adapted). Let t be a standard (that is, finitary

and substitution-invariant) Set-Fmla consequence relation. Then t is axiomatizable

by a finite Set-Fmla H-system if, and only if, there is no strictly increasing sequence

0
t
, 1

t
, . . . , n

t
, . . . of standard Set-Fmla consequence relations such that t

=
⨆︀

i∈𝜔 i
t .

In order to apply the above theorem, we present a family of finite Set-Fmla

H-systems that, in the sequel, will be used to provide an increasing sequence of standard

Set-Fmla consequence relations whose supremum is precisely mCi. Then, we will

show that this sequence is strictly increasing, by employing the matrix methodology

traditionally used for showing the independence of axioms in a proof system.

Definition 101. For each k ∈ 𝜔, let ℋk
mCi be a Set-Fmla H-system for positive classical

logic together with the schemas (em), (bc1), (ci) and (ci)j, for all 0 ≤ j ≤ k.

Since ℋk
mCi may be obtained from ℋmCi by deleting some (infinitely many)

axioms, it is immediate that:

Proposition 102. For every k ∈ 𝜔, ℋk
mCi

t ⊆ mCi
t .

The way we define the promised increasing sequence of consequence relations in

the next result is by taking the systems ℋk
mCi with odd superscripts, namely, we will be

working with the sequence ℋ1
mCi

t
, ℋ3

mCi

t
, ℋ5

mCi

t
, . . . Excluding the cases where k is even

will facilitate, in particular, the proof of Lemma 106, where we show that the proposed

109

sequence of logics is strictly increasing.

Lemma 103. For each 1 ≤ k < 𝜔, let k
t

:=
ℋ2k−1

mCi

t . Then 1
t ⊆ 2

t ⊆ . . ., and

mCi
t

=
⨆︁

1≤k<𝜔 k
t
.

Proof. By Definition 101, every rule schema in ℋ2k−1
mCi is also in ℋ2(k+1)−1

mCi , thus, for every

1 ≤ k < 𝜔, we have k
t ⊆ k+1

t . Let 𝜔
t

:=
⨆︀

1≤k<𝜔 k
t
. From right to left, if Φ 𝜔

t
𝜓, then,

for every Set-Fmla consequence relation *
t over ΣmCi such that *

t ⊇ k
t for all k ∈ 𝜔,

we have Φ *
t
𝜓. By Proposition 102, then, we have Φ mCi

t
𝜓, in particular. From left

to right, suppose that Φ mCi
t

𝜓 and consider a derivation bearing witness to this fact.

Let m ∈ 𝜔 be such that only instances of the rule schemas (ci)j , for 0 ≤ j ≤ m, and

possibly instances of the other rule schemas not of the form of (ci)j are applied in that

derivation. Let **
t be a Set-Fmla consequence relation over ΣmCi such that **

t ⊇ k
t

for all 1 ≤ k < 𝜔. Then, in particular, **
t ⊇ m

t
=

ℋ2m−1
mCi

t . Since all schemas (ci)j , for

0 ≤ j ≤ m, are in ℋ2m−1
mCi , we have Φ

ℋ2m−1
mCi

t
𝜓 and then Φ **

t
𝜓. As **

t was an arbitrary

upper bound, the result applies, in particular, to the least upper bound 𝜔
t , and we are

done.

Finally, we prove that the sequence outlined in the paragraph before Lemma 103

is strictly increasing. In order to achieve this, we define, for each 1 ≤ k < 𝜔, a ΣmCi-

matrix Mk and prove that ℋ2k−1
mCi is sound with respect to such matrix. Then, in the

second part of the proof (the “independence part”), we show that, for each 1 ≤ k < 𝜔,

Mk fails to validate the rule schema (ci)j , for j = 2k, which is present in ℋ2(k+1)−1
mCi . In

this way, by the contrapositive of the soundness result proved in the first part, we will

have (ci)j provable in ℋ2(k+1)−1
mCi while unprovable in ℋ2k−1

mCi . In what follows, for any k ∈ 𝜔,

we use k* to refer to the successor of k.

Definition 104. Let 1 ≤ k < 𝜔. Define the 2k*-valued ΣmCi-matrix Mk := ⟨Ak ,Dk⟩

110

such that Dk := {k* + 1, . . . , 2k*} and Ak := ⟨{1, . . . , 2k*}, ·Ak⟩, the interpretation of

ΣmCi in Ak given by the following operations:

x∨Ak y :=

⎧⎪⎪⎨⎪⎪⎩
1 if x , y ∈ Dk

k* + 1 otherwise
x∧Ak y :=

⎧⎪⎪⎨⎪⎪⎩
k* + 1 if x , y ∈ Dk

1 otherwise

x⊃Ak y :=

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ Dk and y ̸∈ Dk

k* + 1 otherwise

∘Ak x :=

⎧⎪⎪⎨⎪⎪⎩
1 if x = 2k*

k* + 1 otherwise
¬Ak x :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
k* + 1 if x ∈ {1, 2k*}

x + k* if 2 ≤ x ≤ k*

x − (k* − 1) if k* + 1 ≤ x ≤ 2k* − 1

We illustrate in Figure 6.1 the general form of those operations, in an attempt to make

explicit the similarity between the interpretations of ∧, ∨ and ⊃ and the usual two-valued

interpretations for such connectives in positive classical logic, as well as to facilitate the

understanding of the interpretations of ¬ and ∘.

111

∨Ak 1 . . . k* k* + 1 . . . 2k*

1 1 . . . 1
...

k* 1 . . . 1
k* + 1

... k* + 1
2k*

∧Ak 1 . . . k* k* + 1 . . . 2k*

1
... k* + 1

k*

k* + 1 1 . . . 1
...

2k* 1 . . . 1

⊃Ak 1 . . . k* k* + 1 . . . 2k*

1
... k* + 1

k*

k* + 1 1 . . . 1
...

2k* 1 . . . 1

∘Ak

1 k* + 1
2 k* + 1
... ...

k* k* + 1
k* + 1 k* + 1

... ...
2k* − 1 k* + 1

2k* 1

¬Ak

1 k* + 1
2 k* + 2
... ...

k* 2k*

k* + 1 2
... ...

2k* − 1 k*

2k* k* + 1

Figure 6.1.: Illustration of the interpretations of the connectives in ΣmCi provided by the
matrix Mk .

112

Before continuing, we prove a result about this construction, which will be used

in the remainder of the current line of argumentation. In what follows, when there is

no risk of confusion, we omit the subscript ‘Ak ’ from the interpretations to simplify the

notation.

Lemma 105. For all k ≥ 1 and 1 ≤ m ≤ 2k,

¬m
Ak

(k* + 1) =

⎧⎪⎪⎨⎪⎪⎩
(k* + 1) + m

2
, if m is even

1 + m+1
2
, otherwise

Proof. Let k ≥ 1. We prove the lemma by strong induction on 1 ≤ m ≤ 2k. For m = 1,

we have ¬(k* + 1) = (k* + 1)− (k*−1) = 2 = 1 + 1+1
2

. Assume now that (IH): the present

lemma holds for all m′ < m, for a given m > 1.

• Suppose that m = 2s, with 1 ≤ s ≤ k. By (IH), we have that ¬2s(k* + 1) =

¬(¬2s−1(k* + 1)) = ¬(1 + (2s−1)+1
2

) = ¬(1 + s). By the interpretation of ¬, as

2 ≤ 1 + s ≤ k*, we have ¬(1 + s) = 1 + s + k* = (k* + 1) + m
2

.

• Suppose that m = 2s + 1, with 1 ≤ s ≤ k − 1. By (IH), we have ¬2s+1(k* + 1) =

¬(¬2s(k* + 1)) = ¬(k* + 1 + 2s
2

) = ¬(k* + 1 + s). As k* + 2 ≤ k* + 1 + s ≤ k* + k, the

interpretation of ¬ gives us that ¬(k* + 1 + s) = (k* + 1 + s)− (k* − 1) = s + 2 =

m−1
2

+ 2 = (m−1
2

+ 1) + 1 = 1 + m+1
2

.

Lemma 106. For all 1 ≤ k < 𝜔, we have
ℋ2k*−1

mCi

t ∘¬2k∘p but ̸
ℋ2k−1

mCi

t ∘¬2k∘p.

Proof. Let 1 ≤ k < 𝜔. We begin by showing that ℋ2k−1
mCi is sound for Mk . The rule

schemas from positive classical logic are sound with respect to Mk , since the mapping h

given by h(x) = F if x ∈ {1, . . . , k*} and h(x) = T otherwise is a strong homomorphism

from the positive fragment of Mk onto B, the usual two-valued matrix that determines

positive classical logic. Below we show soundness of the remaining rules (all of which

113

are axiom schemas), which involve connectives ¬ and ∘. The lemma just proved will be

employed in the case of (ci)j .

(em) Suppose that v(𝜙 ∨ ¬𝜙) ∈ Dk , then v(𝜙) ∈ Dk and v(¬𝜙) ∈ Dk . From the latter,

we have k* + 1 ≤ v(𝜙) ≤ 2k* − 1, but then v(𝜙) ∈ Dk , a contradiction.

(bc1) Suppose that v(∘𝜙⊃(𝜙⊃(¬𝜙⊃𝜓))) ∈ Dk . Then (a): v(∘𝜙) ∈ Dk and

v(𝜙⊃(¬𝜙⊃𝜓)) ∈ Dk . From the latter, reasoning in the same way, we have (b):

v(𝜙) ∈ Dk , (c): v(¬𝜙) ∈ Dk and v(𝜓) ∈ Dk . From (b), (c) and the interpretation of

¬, we have that v(𝜙) = 2k*, but then v(∘𝜙) = 1 ∈ Dk , contradicting (a).

(ci) Suppose that v(¬∘𝜙⊃(𝜙 ∧ ¬𝜙)) ∈ Dk . Then (a): v(¬∘𝜙) ∈ Dk and (b): v(𝜙 ∧ ¬𝜙) ∈

Dk . From (a), we have (c): 1 ≤ v(∘𝜙) ≤ k* or v(∘𝜙) = 2k*. From (b), we have that

either (b1): v(𝜙) ∈ Dk or (b2): v(¬𝜙) ∈ Dk . By cases:

• if (b1), then v(∘𝜙) = k* + 1, contradicting (c).

• if (b2), then k* + 1 ≤ v(𝜙) ≤ 2k* − 1 by the interpretation of ¬, but then

v(∘𝜙) = k* + 1 by the interpretation of ∘, contradicting (c).

(ci)j For j = 0, suppose that v(∘∘𝜙) ∈ Dk . Then, v(∘𝜙) = 2k*, which is impossible from

the interpretation of ∘. Let 1 ≤ j ≤ 2k − 1. Suppose that v(∘¬j∘𝜙) ∈ Dk . Then, by

the interpretation of ∘, we have (a): v(¬j∘𝜙) = 2k*. By cases on the possible values

of v(∘𝜙):

• if v(∘𝜙) = k* +1: by Lemma 105, if j is even, we have ¬j(k* +1) = (k* +1)+ j
2

=

(k* + 1) + s = k + 2 + s ≤ k + 2 + k − 1 = 2k + 1 < 2k*, with 1 ≤ s ≤ k − 1. If

j is odd, then ¬j(k* + 1) = 1 + j+1
2

= 1 + 2s−1+1
2

= 1 + s ≤ 1 + k < 2k*, with

1 ≤ s ≤ k. Both cases contradict (a).

• if v(∘𝜙) = 1: we may apply the same reasoning of the previous item, since

v(¬j∘𝜙) = ¬j−1v(¬∘𝜙) = ¬j−1(k* + 1).

For the second part of the proof, take a Mk-valuation v such that v(p) = 1. Then

114

v(∘p) = k* +1 and, since 2k is even, by Lemma 105, we have ¬2k(k* +1) = (k* +1)+ 2k
2

=

k* + 1 + k = 2k + 2 = 2k*. Thus v(¬2k∘p) = 2k* and, by the interpretation of ∘, we have

v(∘¬2k∘p) = 1 ∈ Dk , and we are done.

Finally, Theorem 100, Lemma 103 and Lemma 106 give us the main result:

Theorem 107. mCi is not axiomatizable by a finite Set-Fmla H-system.

For the second part —namely, that no finite Set-Set H-system axiomatizes

mCi—, we explore the following result:

Theorem 108 ([57], Theorem 5.37, adapted). Let �t be a one-dimensional consequence

relation over a propositional signature containing the binary connective ∨. Suppose that

the Set-Fmla companion of �t, denoted by
�t , satisfies the following property:

Φ, 𝜙 ∨ 𝜓
�t 𝛾 if, and only if, Φ, 𝜙

�t 𝛾 and Φ, 𝜓
�t 𝛾 (Disj)

If a Set-Set H-system R axiomatizes �t, then R may be converted into a Set-Fmla

H-system for
�t that is finite whenever R is finite.

It turns out that:

Lemma 109. mCi satisfies (Disj).

Proof. The non-deterministic semantics of mCi gives us that, for all 𝜙, 𝜓 ∈ LΣmCi(P),

𝜙 �t
MmCi

𝜙 ∨ 𝜓; 𝜓 �t
MmCi

𝜙 ∨ 𝜓, and 𝜙 ∨ 𝜓 �t
MmCi

𝜙, 𝜓, and such facts easily imply

(Disj) by (T).

Theorem 110. mCi is not axiomatizable by a finite Set-Set H-system.

Proof. If R were a finite Set-Set H-system for mCi, then, by Lemma 109 and Theo-

rem 108, it could be turned into a finite Set-Fmla H-system for this very logic, which

contradicts Theorem 107.

115

Finding a finite one-dimensional H-system for mCi (analytic or not) over the

same language, then, proved to be impossible. The previous result also tells us that there

is no sufficient expressive non-deterministic matrix that characterizes mCi (for otherwise

the recipe in [17] would deliver a finite analytic Set-Set H-system for it), and we may

conclude, in particular, that:

Corollary 111. The nd-matrix MmCi is not sufficiently expressive.

The pairs of truth-values of MmCi that seem not to be separable (at least one

of these pairs must not be, in view of the above corollary) are (t,T) and (f ,F). The

insufficiency of expressive power to take these specific pairs of values apart, however,

would not occur if we had considered instead the matrix defined below:

Definition 112. Let Mn
mCi := ⟨A5,N5⟩, where N5 := {f , I ,T}.

Note that t ̸∈ N5, while T ∈ N5, and that f ∈ N5, while F ̸∈ N5. Therefore, the

single propositional variable p separates in Mn
mCi the pairs (t,T) and (f ,F). On the other

hand, it is not clear now whether the pairs (t,F) and (f ,T) are separable in this new

matrix. Nonetheless, we will see, in the next section, how we can take advantage of the

semantics of non-deterministic B-matrices in order to combine the expressiveness of MmCi

and Mn
mCi in a very simple and intuitive manner, preserving the language and the algebra

shared by these matrices. We identify two important aspects of this combination: first,

the logics determined by the original matrices can be fully recovered from the combined

logic; and, second, since the notions of H-systems and sufficient expressiveness, as well

as the axiomatization algorithm of [17], were generalized in Chapter 5, the resulting

two-dimensional logic may be algorithmically axiomatized by an analytic two-dimensional

H-system that is finite if the combining matrices are finite, provided the criterion of

sufficient expressiveness is satisfied after the combination. This will be particularly the

case when we combine MmCi and Mn
mCi. Consequently, this novel way of combining

logics provides a quite general approach for producing finite and analytic axiomatizations

116

for logics determined by non-deterministic logical matrices that may be not finitely

axiomatizable in one dimension; in particular, the logics from Example 98 and mCi.

6.2. Combining two logical matrices into a

nd-B-matrix

In Section 5.2, the axiomatization algorithm of [17] was generalized to nd-

B-matrices and Set2-Set2 H-systems, guaranteeing that every sufficiently expressive

nd-B-matrix M is axiomatizable by a Θ-analytic Set2-Set2 H-system, which is finite

whenever M is finite, where Θ is a set of separators for the pairs of truth-values of

M. Note that, in view of the generalization of the property of sufficient expressiveness

provided in Section 5.1, a unary formula is characterized as a separator whenever it

separates a pair of truth-values according to at least one of the distinguished sets of

values. This means that having two of such sets may allow us to separate more pairs

of truth-values than having a single set, that is, the nd-B-matrices are, in this sense,

potentially more expressive than the (one-dimensional) logical matrices.

Example 113. Let A be the Σ-nd-algebra from Example 98, and consider the nd-B-

matrix M := ⟨A, {t}, {f}⟩. As we know, in this matrix the pair (f ,⊥) is not separable

if we consider only the set of designated values {t}. However, as we have now the set

{f} of antidesignated truth-values, the separation becomes evident: the propositional

variable p is a separator for this pair now, since f ∈ {f} and ⊥ ̸∈ {f}. The recipe in

Definition 81 together with the simplifications described in Section 5.3, then, produce the

following Set2-Set2 axiomatization for M, with only three very simple schematic rules

of inference:

117

p ‖ p

‖

‖

f (p), p ‖ p

‖ p

‖ t(p)

By construction, the one-dimensional logic determined by the nd-matrix of Example 98

inhabits the t-aspect of ·
· |

·
· M , thus it can be seen as being axiomatized by this finite

and analytic two-dimensional system (contrast with the infinite Set-Set axiomatization

known for this logic provided in that same example).

We constructed above a Σ-nd-B-matrix from two Σ-nd-matrices in such a way

that the one-dimensional logics determined by latter are fully recoverable from the former.

We formalize this construction below:

Definition 114. Let M := ⟨A,D⟩ and M′ := ⟨A,D′⟩ be Σ-nd-matrices. The B-product

between M and M′ is the Σ-nd-B-matrix M⊙M′ := ⟨A,D,D′⟩.

Note that Φ �t
M Ψ iff

Φ
|Ψ M⊙M′ iff Φ �M⊙M′

t Ψ, and Φ �t
M′ Ψ iff Ψ |

Φ M⊙M′ iff

Φ �M⊙M′

f Ψ. Therefore, �t
M and �t

M′ are easily recoverable from ·
· |

·
· M⊙M

′ , since they

inhabit, respectively, the t-aspect and the f-aspect of the latter. One of the applications

of this novel way of putting two distinct logics together was illustrated in that same

Example 113 to produce a two-dimensional analytic and finite axiomatization for a one-

dimensional logic characterized by a Σ-nd-matrix. As we have shown, the one-dimensional

logic does not need to be finitely axiomatizable by a Set-Set H-system. We present this

application of B-products with more generality below:

Proposition 115. Let M := ⟨A,D⟩ be a Σ-nd-matrix and suppose that the pairs

(x1, y1), . . . , (xn, yn), . . . ∈ A × A of distinct truth-values are not separable in M. If,

for some M′ := ⟨A,D′⟩, these pairs are separable in M′, then M⊙M′ is sufficiently ex-

pressive (thus, axiomatizable by an analytic Set2-Set2 H-system, that is finite whenever

A is finite).

Proof. Let (z ,w) ∈ A×A. In case (z ,w) ̸= (xi , yi) for all i, there is a separator S for (z ,w)

118

in M, that is, SA(z)#DSA(w). Otherwise, if (xi , yi) is separable in M′ for all i, then, in

particular, (z ,w) is also separable in M′, say by a separator S′, that is, S′
A(z)#D′S′

A(w).

Therefore, every pair of truth-values of A is separable in M, thus the latter is sufficiently

expressive. By the procedure in Section 5.2, M is axiomatizable by an analytic Set2-Set2

H-system that is finite if A is finite.

Let us, in the next subsection, return to the case of mCi and see how the latter

result can be applied to finitely axiomatize this logic in two dimensions.

6.3. A finite and analytic two-dimensional system

for mCi

In the spirit of Proposition 115, we define below a ΣmCi-nd-B-matrix by com-

bining the matrices MmCi := ⟨A5,Y5⟩ and Mn
mCi := ⟨A5,N5⟩ introduced respectively in

Definition 99 and Definition 112:

Definition 116. Let MmCi := MmCi ⊙Mn
mCi = ⟨A5,Y5,N5⟩, with Y5 := {I ,T , t} and

N5 := {f , I ,T}.

When we consider now both sets Y5 and N5 of designated and antidesignated

truth-values, the separation of all truth-values of A5 becomes possible, that is, MmCi is

sufficiently expressive, as guaranteed by Proposition 115. Furthermore, notice that we

have two alternatives for separating the pairs (I , t) and (I ,T): either using the formula ¬p

or the formula ∘p. With this finite sufficiently expressive nd-B-matrix in hand, producing

a finite {p, ∘p}-analytic two-dimensional H-system for it is immediate by the results in

Section 5.2. Therefore,

Theorem 117. mCi is axiomatizable by a finite and analytic two-dimensional H-system.

The axiomatization recipe in Definition 81 delivers a Set2-Set2 H-system with

119

about 300 rule schemas. When we simplify it using the streamlining procedures indicated

in Section 5.3, we obtain a much more succinct and insightful presentation, with 28 rule

schemas, which we call RmCi and present in full below:

RmCi

q ‖

p⊃q ‖
⊃mCi

1

‖

p, p⊃q ‖
⊃mCi

2

p⊃q, p ‖

q ‖
⊃mCi

3

p ‖

q ‖ p⊃q
⊃mCi

4

p⊃q, ∘(p⊃q) ‖ p⊃q

‖
⊃mCi

5

p, q ‖

p ∧ q ‖
∧mCi

1

p ∧ q ‖

p ‖
∧mCi

2

p ∧ q ‖

q ‖
∧mCi

3

‖

p ∧ q ‖ p ∧ q
∧mCi

4

p ∧ q, ∘(p ∧ q) ‖ p ∧ q

‖
∧mCi

5

p ‖

p ∨ q ‖
∨mCi

1

q ‖

p ∨ q ‖
∨mCi

2

p ∨ q ‖

p, q ‖
∨mCi

3

‖

p, q ‖ p ∨ q
∨mCi

4

p ∨ q, ∘(p ∨ q) ‖ p ∨ q

‖
∨mCi

5

∘p ‖

‖ ∘p
∘mCi
1

‖

∘∘p ‖
∘mCi
2

‖ ∘p

∘p ‖
∘mCi
3

‖

∘p ‖ p
∘mCi
4

‖

p ‖ ∘p
∘mCi
5

‖

‖ ¬p, p
¬mCi

1

¬p, ∘p, p ‖

‖
¬mCi

2

¬p, p ‖

‖ p
¬mCi

3

∘¬p ‖ ¬p, p

‖
¬mCi

4

‖ ¬p, p

¬p ‖
¬mCi

5

‖

¬p, ∘p ‖
¬mCi

6

‖

¬p, p ‖
¬mCi

7

‖

∘¬p ‖ p
¬mCi

8

120

Note that the set of rules {©mCi
i | © ∈ {∧,∨,⊃}, i ∈ {1, 2, 3}} makes it clear that

in the t-aspect of the induced B-consequence relation inhabits a logic extending positive

classical logic, while the remaining rules for these connectives involve interactions between

the two dimensions. Also, rule ¬mCi
2 indicates that ∘ satisfies one of the conditions for

being considered a consistency connective in the logic inhabiting the t-aspect. In fact,

all these observations are aligned with the fact that the logic inhabiting the t-aspect of
·
· |

·
· RmCi is precisely mCi.

121

7. Final remarks

In this work, we presented a Hilbert-style formalism for B-consequence relations

by generalizing the Set-Set (or “multiple-conclusion”) Hilbert-style formalism introduced

in [57]. We also provided a proof-search and countermodel-search algorithm for finite

and analytic systems based on [17], which runs in exponential time in general and in

polynomial time when every rule of inference of the system at hand has a single formula

in the succedent. Moreover, as a generalization of [43], we presented an axiomatization

procedure that delivers (finite) analytic systems for the very inclusive class of (finite)

sufficiently expressive partial non-deterministic B-matrices. We closed, then, with a new

way of putting two one-dimensional consequence relations together by merging their

characterizing matrices into a nd-B-matrix, showing, furthermore, that this operation may

deliver finite two-dimensional axiomatizations for logics that are non-finitely axiomatizable

in one dimension. The latter was mainly illustrated via the logic of formal inconsistency

called mCi.

We highlight that our two-dimensional proof-formalism differs in important

respects from the many-placed sequent calculi used in [5] to axiomatize (one-dimensional

total) non-deterministic matrices (requiring no sufficient expressiveness) and in [34] for

approaching multilateralism. First, a many-placed sequent calculus is not Hilbert-style:

rules manipulate complex objects whose structure involve contexts and considerably

deviate from the shape of the consequence relation being captured; our systems, on the

other hand, are contained in their corresponding B-consequence relations. Second, when

122

axiomatizing a matrix, the structure of many-placed sequents grows according to the

number of values (n places for n truth-values); our rule schemas, in turn, remain with

four places, and reflect the complexity of the underlying semantics in the complexity of

the formulas being manipulated. Moreover, the study of many-placed sequents currently

contemplates only one-dimensional consequence relations. Extending them to the two-

dimensional case is a line of research worth exploring.

As opportunities of further future work, we envisage a more deep investigation

of the other one-dimensional aspects — like q and p — of the B-consequence relations

studied in this work; a study on how to convert the two-dimensional H-systems produced

by our algorithm to n-place sequents or ordinary sequent calculi; and an investigation

of the conditions under which a two-dimensional H-system can be converted into a one-

dimensional H-system for each of its one-dimensional (Tarskian) aspects, and vice-versa,

preserving desirable properties. In this respect, note that the examples presented in

Chapter 6 allow us to eliminate the suspicion that a two-dimensional H-system R may

always be converted into Set-Set H-systems for the logics inhabiting the one-dimensional

aspects of ·
· |

·
· R without losing the finiteness of the presentation.

Furthermore, we see as a promising line of investigation the generalization of the

two-dimensional notion of consequence relation by allowing logics over different languages

([35]) — for instance, conflating different logics or different fragments of some given logic

of interest — to coinhabit the same logical structure, each one along its own dimension,

while controlling their interaction at the object-language level, taking advantage of the

framework and the results in [44]. This opens the doors for a line of research on whether

or to what extent the individual characteristics of these ingredient logics, such as their

decidability status, may be preserved.

With respect to our proof-search algorithm, an important research path to be

explored would involve comparing it with other proof-search algorithms for non-classical

123

propositional logics (for instance, the theorem prover in [49] that encompasses mbC and

mCi), and work on the design of heuristics for smarter choices of rule instances used to

expand nodes during the search, as this may improve the performance of the algorithm

on certain classes of logics.

At last, we also expect the present research to be extended so as to cover

multidimensional notions of consequence, in order to provide increasingly general technical

and philosophical grounds for the study of logical pluralism [9]. Note that the general

account of symmetrical H-systems developed in detail in Chapter 3 already covers the

possibility of having n-tuples of sets of formulas as antecedents and succedents in rules

of inference, as well as in labels of rooted trees. In other words, it already makes sense

to talk about Setn-Setn H-systems, even though the associated notion of consequence

relation remains to be developed and investigated. Actually, the extent to which the quite

general derivation structures described in the mentioned chapter can be explored is still

to be studied. For example, the fact that node labels may come from an arbitrary power

set seems to provide suitable grounds for the generalization of fixed-point theorems and

inductively defined sets, taking into account the possibility of reaching a fixed-point (or

obtaining the desired objects) in each derivation branch.

124

Bibliography

[1] Arnon Avron. “5-valued non-deterministic semantics for the basic paraconsistent

logic mCi”. In: Studies in Logic, Grammar and Rhetoric (2008), pp. 127–136

(cit. on pp. 32, 108).

[2] Arnon Avron. “Multi-valued semantics: Why and how”. In: Studia Logica 92.2

(2009), pp. 163–182. doi: 10.1007/s11225-009-9193-2 (cit. on pp. 12, 17).

[3] Arnon Avron. “Non-deterministic matrices and modular semantics of rules”. In:

Logica Universalis (2005), pp. 149–167. doi: 10.1007/3-7643-7304-0_9 (cit. on

p. 108).

[4] Arnon Avron, Jonathan Ben-Naim, and Beata Konikowska. “Cut-free ordinary

sequent calculi for logics having generalized finite-valued semantics”. In: Logica

Universalis 1 (2007), pp. 41–70. doi: 10.1007/s11787-006-0003-6 (cit. on pp. 31,

92, 108).

[5] Arnon Avron and Beata Konikowska. “Multi-valued calculi for logics based on

non-determinism”. In: Logic Journal of the IGPL 13.4 (2005), pp. 365–387. issn:

1367-0751. doi: 10.1093/jigpal/jzi030 (cit. on pp. 108, 122).

[6] Arnon Avron and Anna Zamansky. “Non-deterministic semantics for logical sys-

tems”. In: Handbook of Philosophical Logic: Volume 16. Ed. by Dov M. Gabbay

and Franz Guenthner. Dordrecht: Springer, 2011, pp. 227–304. doi: 10.1007/978-

94-007-0479-4 (cit. on p. 5).

125

https://doi.org/10.1007/s11225-009-9193-2
https://doi.org/10.1007/3-7643-7304-0_9
https://doi.org/10.1007/s11787-006-0003-6
https://doi.org/10.1093/jigpal/jzi030
https://doi.org/10.1007/978-94-007-0479-4
https://doi.org/10.1007/978-94-007-0479-4

[7] Matthias Baaz, Ori Lahav, and Anna Zamansky. “Finite-valued semantics for

canonical labelled calculi”. In: Journal of Automated Reasoning 51 (2013). doi:

10.1007/s10817-013-9273-x (cit. on pp. 5, 11, 12, 17).

[8] Raymond Balbes and Philip Dwinger. Distributive Lattices. University of Missouri

Press, 1975 (cit. on p. 43).

[9] JC Beall and Greg Restall. Logical Pluralism. Clarendon Press, 2006 (cit. on p. 124).

[10] Kent Bendall. “Negation as a Sign of Negative Judgment”. In: Notre Dame Journal

of Formal Logic 20.1 (1979), pp. 68–76. doi: 10.1305/ndjfl/1093882402 (cit. on

p. 3).

[11] Carolina Blasio. “Revisitando a lógica de Dunn-Belnap”. pt. In: Manuscrito 40

(2017), pp. 99–126. issn: 0100-6045. doi: 10.1590/0100-6045.2017.v40n2.cb

(cit. on pp. 5, 24, 25, 31, 35).

[12] Carolina Blasio. “Sobre noções de consequência generalizadas e lógicas pluriva-

lentes”. PhD thesis. Unicamp, 2017. url: http://bdtd.ibict.br/vufind/

Record/CAMP_91bae0288ac9e93f623dff24c2867b4a (cit. on pp. 21, 22, 24).

[13] Carolina Blasio, João Marcos, and Heinrich Wansing. “An inferentially many-valued

two-dimensional notion of entailment”. In: Bulletin of the Section of Logic 46.3/4

(2017), pp. 233–262. doi: 10.18778/0138-0680.46.3.4.05 (cit. on pp. 3, 4, 15,

21, 23–25, 27, 29, 30, 32).

[14] Alexander Bochman. “Biconsequence Relations: A Four-Valued Formalism of Rea-

soning with Inconsistency and Incompleteness”. In: Notre Dame Journal of Formal

Logic 39.1 (1998), pp. 47–73. doi: 10.1305/ndjfl/1039293020 (cit. on p. 24).

[15] D. A. Bochvar and Merrie Bergmann. “On a three-valued logical calculus and its

application to the analysis of the paradoxes of the classical extended functional

126

https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1305/ndjfl/1093882402
https://doi.org/10.1590/0100-6045.2017.v40n2.cb
http://bdtd.ibict.br/vufind/Record/CAMP_91bae0288ac9e93f623dff24c2867b4a
http://bdtd.ibict.br/vufind/Record/CAMP_91bae0288ac9e93f623dff24c2867b4a
https://doi.org/10.18778/0138-0680.46.3.4.05
https://doi.org/10.1305/ndjfl/1039293020

calculus”. In: History and Philosophy of Logic 2.1-2 (1981), pp. 87–112. doi:

10.1080/01445348108837023 (cit. on p. 58).

[16] Stanley Burris and Hanamantagouda Sankappanavar. A Course in Universal

Algebra. Vol. 91. Jan. 1981. isbn: 0-387-90578-2. doi: 10.2307/2322184 (cit. on

pp. 8, 11).

[17] C. Caleiro and S. Marcelino. “Analytic calculi for monadic PNmatrices”. In: Logic,

Language, Information and Computation (WoLLIC 2019). Ed. by R. Iemhoff, M.

Moortgat, and R. Queiroz. Vol. 11541. LNCS. Springer, 2019, pp. 84–98. doi:

10.1007/978-3-662-59533-6 (cit. on pp. 2, 5, 31, 56, 61, 71, 79, 105, 106, 108,

116, 117, 122, 142).

[18] C. Caleiro, S. Marcelino, and P. Filipe. “Infectious semantics and analytic calculi for

even more inclusion logics”. In: IEEE International Symposium on Multiple-Valued

Logic. 2020, pp. 224–229. doi: 10.1109/ISMVL49045.2020.000-1 (cit. on p. 5).

[19] Carlos Caleiro and Sérgio Marcelino. “On Axioms and Rexpansions”. In: Arnon

Avron on Semantics and Proof Theory of Non-Classical Logics. Ed. by Ofer Arieli

and Anna Zamansky. Springer, 2021, pp. 39–69. isbn: 978-3-030-71258-7. doi:

10.1007/978-3-030-71258-7_3 (cit. on p. 5).

[20] Walter Carnielli and João Marcos. “A taxonomy of C-systems”. In: Paraconsistency.

Taylor and Francis, 2002. doi: 10.1201/9780203910139-3 (cit. on p. 106).

[21] Walter A. Carnielli, Marcelo E. Coniglio, and João Marcos. “Logics of Formal

Inconsistency”. In: Handbook of Philosophical Logic. Ed. by D. Gabbay and F.

Guenthner. 2nd. Vol. 14. Springer, 2007, pp. 1–93. doi: 10.1007/978-1-4020-

6324-4_1 (cit. on p. 108).

127

https://doi.org/10.1080/01445348108837023
https://doi.org/10.2307/2322184
https://doi.org/10.1007/978-3-662-59533-6
https://doi.org/10.1109/ISMVL49045.2020.000-1
https://doi.org/10.1007/978-3-030-71258-7_3
https://doi.org/10.1201/9780203910139-3
https://doi.org/10.1007/978-1-4020-6324-4_1
https://doi.org/10.1007/978-1-4020-6324-4_1

[22] Sergey Drobyshevich. “A bilateral Hilbert-style investigation of 2-intuitionistic

logic”. In: Journal of Logic and Computation 29.5 (May 2019), pp. 665–692. issn:

0955-792X. doi: 10.1093/logcom/exz010 (cit. on p. 3).

[23] Sergey Drobyshevich. “Tarskian consequence relations bilaterally: some familiar

notions”. In: Synthese (Jan. 2019). issn: 0039-7857. doi: 10.1007/s11229-019-

02267-w (cit. on pp. 3, 4, 40).

[24] J. Michael Dunn and Gary Hardegree. Algebraic Methods in Philosophical Logic.

Oxford, England: Oxford University Press UK, 2001 (cit. on pp. 17, 18).

[25] Fernando Ferreira. “The Co-ordination Principles: A Problem for Bilateralism”. In:

Mind 117.468 (2008), pp. 1051–1057. issn: 00264423, 14602113 (cit. on p. 3).

[26] Josep Font. “Belnap’s Four-Valued Logic and De Morgan Lattices”. In: Logic

Journal of the IGPL 5 (May 1997), pp. 1–29. doi: 10.1093/jigpal/5.3.1-e

(cit. on p. 39).

[27] Szymon Frankowski. “Formalization of a plausible inference”. In: Bulletin of the

Section of Logic 33 (Jan. 2004), pp. 41–52 (cit. on pp. 21, 22).

[28] Szymon Frankowski. “P-consequence versus q-consequence operations”. In: Bulletin

of the Section of Logic 33 (Jan. 2004). url: http://www.filozof.uni.lodz.pl/

bulletin/pdf/33_4_2.pdf (cit. on p. 23).

[29] Szymon Frankowski. “Syntactic properties of p-consequence”. In: Logic and Logical

Philosophy 20.4 (2011), pp. 285–295. issn: 2300-9802. url: https://apcz.umk.

pl/czasopisma/index.php/LLP/article/view/LLP.2011.018 (cit. on p. 40).

[30] Gotlob Frege. “Negation”. In: Translations from the philosophical writings of Gottlob

Frege. Oxford University Press, 1960 (cit. on p. 3).

128

https://doi.org/10.1093/logcom/exz010
https://doi.org/10.1007/s11229-019-02267-w
https://doi.org/10.1007/s11229-019-02267-w
https://doi.org/10.1093/jigpal/5.3.1-e
http://www.filozof.uni.lodz.pl/bulletin/pdf/33_4_2.pdf
http://www.filozof.uni.lodz.pl/bulletin/pdf/33_4_2.pdf
https://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2011.018
https://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2011.018

[31] Michael Gabbay. “Bilateralism does not provide a proof theoretic treatment of

classical logic (for technical reasons)”. In: Journal of Applied Logic 25 (2017).

Logical Investigations on Assertion and Denial, S108–S122. issn: 1570-8683. doi:

https://doi.org/10.1016/j.jal.2017.11.001 (cit. on p. 3).

[32] Ana Golzio. “Non-deterministic Matrices: Theory and Applications to Algebraic

Semantics”. PhD thesis. Unicamp, Mar. 2017. url: http://bdtd.ibict.br/

vufind/Record/CAMP_f127773c5e5588015714d9fe2d4e7a21 (cit. on p. 9).

[33] Vitor Greati. “Hilbert Calculi for the Main Fragments of Classical Logic”. Bachelor’s

thesis. 2019. url: https://repositorio.ufrn.br/handle/123456789/34164%22

(cit. on p. 39).

[34] Ole Thomassen Hjortland. “Speech acts, categoricity, and the meanings of logical

connectives”. In: Notre Dame Journal of Formal Logic 55.4 (2014), pp. 445–467.

doi: 10.1215/00294527-2798700 (cit. on p. 122).

[35] Lloyd Humberstone. “Heterogeneous logic”. In: Erkenntnis 29.3 (1988), pp. 395–435.

doi: 10.1007/BF00183072 (cit. on p. 123).

[36] Lloyd Humberstone. The Connectives. MIT Press, 2011 (cit. on p. 34).

[37] Lloyd Humberstone. “The Revival of Rejective Negation”. In: Journal of Philosoph-

ical Logic 29 (Jan. 2000), pp. 331–381. doi: 10.1023/A:1004747920321 (cit. on

p. 3).

[38] Kenneth Kunen. Set Theory. College Publications, 2011 (cit. on p. 46).

[39] Nils Kürbis. “Bilateralism: Negations, Implications and Some Observations and

Problems About Hypotheses”. In: Beyond Logic. Proceedings of the Conference

held in Cerisy-la-Salle, 22-27 May 2017. Ed. by Thomas Piecha and Jean Fichot.

2017 (cit. on p. 3).

129

https://doi.org/https://doi.org/10.1016/j.jal.2017.11.001
http://bdtd.ibict.br/vufind/Record/CAMP_f127773c5e5588015714d9fe2d4e7a21
http://bdtd.ibict.br/vufind/Record/CAMP_f127773c5e5588015714d9fe2d4e7a21
https://repositorio.ufrn.br/handle/123456789/34164%22
https://doi.org/10.1215/00294527-2798700
https://doi.org/10.1007/BF00183072
https://doi.org/10.1023/A:1004747920321

[40] Nils Kürbis. “Some Comments on Ian Rumfitt’s Bilateralism”. In: Journal of

Philosophical Logic 45.6 (2016), pp. 623–644. doi: 10.1007/s10992-016-9395-9

(cit. on p. 3).

[41] Tore Langholm. “Partiality, Modality and Nonmonotonicity”. In: CSLI Publications,

1996. Chap. How Different is Partial Logic? (Cit. on p. 24).

[42] Grzegorz Malinowski. “Inferential many-valuedness”. In: Philosophical Logic in

Poland. Ed. by Jan Woleński. Dordrecht: Springer Netherlands, 1994, pp. 75–84.

isbn: 978-94-015-8273-5. doi: 10.1007/978-94-015-8273-5_6 (cit. on pp. 15,

20–22).

[43] S. Marcelino and C. Caleiro. “Axiomatizing non-deterministic many-valued gen-

eralized consequence relations”. In: Synthese (2019). doi: 10.1007/s11229-019-

02142-8 (cit. on pp. 2, 5, 6, 56, 58, 61, 71, 73, 79, 92, 122).

[44] S. Marcelino and C. Caleiro. “Decidability and complexity of fibred logics without

shared connectives”. In: Logic Journal of the IGPL 24.5 (2016), pp. 673–707. issn:

1367-0751. doi: 10.1093/jigpal/jzw033 (cit. on p. 123).

[45] S. Marcelino and C. Caleiro. “Disjoint fibring of non-deterministic matrices”. In:

Logic, Language, Information and Computation (WoLLIC 2017). Ed. by R. de

Queiroz J. Kennedy. Vol. 10388. LNCS. Springer, 2017, pp. 242–255. doi: 10.1007/

978-3-662-55386-2 (cit. on p. 5).

[46] Sérgio Marcelino. “An Unexpected Boolean Connective”. In: Logica Universalis

(June 2021). issn: 1661-8300. doi: 10.1007/s11787-021-00280-7 (cit. on p. 105).

[47] João Marcos. “Possible-translations semantics for some weak classically-based

paraconsistent logics”. In: Journal of Applied Non-Classical Logics 18.1 (2008),

pp. 7–28. doi: 10.3166/jancl.18.7-28 (cit. on pp. 6, 32, 107, 108).

130

https://doi.org/10.1007/s10992-016-9395-9
https://doi.org/10.1007/978-94-015-8273-5_6
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.1093/jigpal/jzw033
https://doi.org/10.1007/978-3-662-55386-2
https://doi.org/10.1007/978-3-662-55386-2
https://doi.org/10.1007/s11787-021-00280-7
https://doi.org/10.3166/jancl.18.7-28

[48] Sara Negri, Jan von Plato, and Aarne Ranta. Structural Proof Theory. Cambridge

University Press, 2001. doi: 10.1017/CBO9780511527340 (cit. on p. 39).

[49] Adolfo Neto. “Um provador de teoremas multi-estratégia”. PhD thesis. Instituto

de Matemática e Estatística - USP, 2007 (cit. on p. 124).

[50] K. Palasinska. “Deductive systems and finite axiomatization properties”. Iowa

State University, 1994. doi: 10.31274/rtd-180813-12680 (cit. on p. 105).

[51] Huw Price. “Sense, Assertion, Dummett and Denial”. In: Mind 92.366 (1983),

pp. 161–173. doi: 10.1093/mind/XCII.366.161 (cit. on p. 3).

[52] Huw Price. “Why ‘Not’?” In: Mind 99.394 (1990), pp. 221–238. doi: 10.1093/

mind/XCIX.394.221 (cit. on p. 3).

[53] Wolfgang Rautenberg. “2-element matrices”. In: Studia Logica 40.4 (Dec. 1981),

pp. 315–353 (cit. on pp. 39, 105).

[54] Ian Rumfitt. “‘Yes’ and ‘No’”. In: Mind 109.436 (2000), pp. 781–823. doi: 10.

1093/mind/109.436.781 (cit. on pp. 3, 4, 40).

[55] Ian Rumfitt. “Co-ordination Principles: A Reply”. In: Mind 117.468 (2008), pp. 1059–

1063. issn: 00264423, 14602113. url: http://www.jstor.org/stable/20532706

(cit. on p. 3).

[56] Ian Rumfitt. “Unilateralism Disarmed: A Reply to Dummett and Gibbard”. In:

Mind 111.442 (2002), pp. 305–322. doi: 10.1093/mind/111.442.305 (cit. on p. 3).

[57] D. J. Shoesmith and T. J. Smiley. Multiple-Conclusion Logic. Cambridge University

Press, 1978. doi: 10.1017/CBO9780511565687 (cit. on pp. 2, 5, 14, 17, 42, 56, 79,

105, 115, 122).

[58] Yaroslav Shramko and Heinrich Wansing. Truth and falsehood. An inquiry into

generalized logical values. Jan. 2012. isbn: 978-94-007-0906-5. doi: 10.1007/978-

94-007-0907-2 (cit. on p. 23).

131

https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.31274/rtd-180813-12680
https://doi.org/10.1093/mind/XCII.366.161
https://doi.org/10.1093/mind/XCIX.394.221
https://doi.org/10.1093/mind/XCIX.394.221
https://doi.org/10.1093/mind/109.436.781
https://doi.org/10.1093/mind/109.436.781
http://www.jstor.org/stable/20532706
https://doi.org/10.1093/mind/111.442.305
https://doi.org/10.1017/CBO9780511565687
https://doi.org/10.1007/978-94-007-0907-2
https://doi.org/10.1007/978-94-007-0907-2

[59] Timothy Smiley. “Rejection”. In: Analysis 56.1 (1996), pp. 1–9. doi: 10.1111/j.

0003-2638.1996.00001.x (cit. on p. 3).

[60] Bolesław Sobociński. “Axiomatization of a partial system of three-valued calculus

of propositions”. In: The Journal of Computing Systems 1.1 (1952), pp. 23–55

(cit. on p. 58).

[61] Roman Suszko. “The Fregean Axiom and Polish mathematical logic in the 1920s”. In:

Studia Logica 36.4 (1977), pp. 377–380. issn: 00393215. doi: 10.1007/BF02120672

(cit. on p. 19).

[62] Heinrich Wansing and Marco Ruffino. “Varieties of entailment: introduction to the

special issue”. In: Synthese 198.22 (Oct. 2021), pp. 5207–5211. issn: 1573-0964.

doi: 10.1007/s11229-020-02778-x (cit. on p. 26).

[63] R. Wójcicki. “Some remarks on the consequence operation in sentential logics”. In:

Fundamenta Mathematicae 68 (1970), pp. 269–279 (cit. on p. 17).

[64] Ryszard Wójcicki. Theory of Logical Calculi. 1st ed. Synthese Library. Springer,

Dordrecht, 1988, p. 474. isbn: 978-90-277-2785-5. doi: 10.1007/978-94-015-

6942-2 (cit. on p. 109).

132

https://doi.org/10.1111/j.0003-2638.1996.00001.x
https://doi.org/10.1111/j.0003-2638.1996.00001.x
https://doi.org/10.1007/BF02120672
https://doi.org/10.1007/s11229-020-02778-x
https://doi.org/10.1007/978-94-015-6942-2
https://doi.org/10.1007/978-94-015-6942-2

A. Implementation of the

axiomatization and proof-search

algorithms

In Chapter 5, we presented a recipe for axiomatizing any sufficiently expressive

nd-B-matrix M, which results in a finite analytic Set2-Set2 H-system for M whenever

M is finite. We have implemented this algorithm in the language C++ and provided a

command-line interface for it, which accepts a description in a YAML file and produces

the resulting system in plain text in the terminal, in LATEX code or as another YAML

file, according to our choice. We may also choose what kind of simplification procedures

should be executed over the raw system resulting from the Definition 81. In this appendix,

we briefly explain how to describe, in an YAML file, the nd-B-matrix of interest and some

details about the behaviour of the program under this input, as well as how to use the

command-line interface to produce the desired axiomatization. We also show how to

perform proof search over the generated analytic proof systems. The source code of the

implementation is available at https://github.com/greati/logicantsy.

133

https://github.com/greati/logicantsy

Building the command-line program

In order to avoid any compilation problem that might appear due to the operating

system being used, we provide all that is necessary to build a Docker image and run the

program from it. Visit docker.com for instructions on how to install and use Docker in

each operating system. The building instructions are just the following, assuming Docker

is already installed:

1. Clone the git repository:

git clone https://github.com/greati/logicantsy

2. Run the following commands:

cd logicantsy

docker build -t logicantsy .

3. Test if all is good by running:

docker run logicantsy ./ltsy --help

If the running instructions of the command-line interface are shown, then the build

process was successful.

Building in Linux, no Docker

Those interested in building the tool in a Linux-based environment without using

Docker, here are the instructions:

1. First of all, install the following packages/programs:

• gcc (supporting C++17)

• git

• make

• cmake ≥ 3.13

• flex

134

docker.com

• bison

• boost

2. Clone the git repository:

git clone https://github.com/greati/logicantsy

3. Run the following commands:

cd logicantsy

cmake -B build -S sources

cd build

make

4. Test if all is good by running:

./ltsy --help

Describing the nd-B-matrix

Below is an input file that produces an axiomatization for the nd-B-matrix of

Example 82. We explain in the sequel each of its parts.
1 pnmatrix:
2 values: [f, u, t]
3 distinguished_sets:
4 - [t, u]
5 - [f, u]
6 interpretation:
7 p -> q:
8 default: [t,u]
9 restrictions:

10 - [_, u]: []
11 - [u, _]: []
12 - [t, f]: [f]
13 p and q:
14 default: [f]
15 restrictions:
16 - [_, u]: []
17 - [u, _]: []
18 - [t, t]: [t,u]

135

19 neg p:
20 restrictions:
21 - [f]: [t, u]
22 - [u]: []
23 - [t]: [f]
24 discriminator:
25 f: [[], [p], [], []]
26 u: [[p], [], [p], []]
27 t: [[p], [], [], [p]]
28 simplify_overlap: true
29 simplify_dilution: true
30 simplify_by_cuts: true
31 simplify_subrules_deriv: 10
32 simplify_derivation: 10
33 derive:
34 r1: [[q],[p],[p -> q],[]]
35 r2: [[],[],[p,q],[p and q]]
36 latex:
37 "->": "\\to"
38 and: "\\land"
39 or: "\\lor"
40 p: "\\varphi"
41 p1: "\\varphi"
42 p2: "\\psi"
43 p3: "\\phi"
44 p4: "\\sigma"
45 q: "\\psi"
46 f: "\\mathbf{f}"
47 t: "\\mathbf{t}"
48 neg: "\\neg"

The first section in this file, called pnmatrix, describes the nd-B-matrix to be

axiomatized. It has three subsections:

• values: the list of truth-values. You may use any alphanumeric string for the name

of a value. Internally, they become natural numbers in the order they are listed. In

the present example, the set of values is {f ,u, t}.

• distinguished sets: a list of the distinguished sets of the matrix being described.

Our intention in the above file is to specify that Y := {t,u} and N := {f ,u}.

Internally we store a list of sets, where the first element (of index 0) is Y, the second

is Y, the third is N and the fourth is N.

136

• interpretation: a list of truth tables. The description of each truth table has the

following elements:

– a formula expressing the general form of a compound of the connective being

interpreted. For example, by writing p -> q, we indicate that what follows is

a description of an interpretation for ->. We have some default connectives

implemented, namely neg (unary) and and, or, -> (binary). For introducing new

connectives, use the notation symbol(p1,p2,...,pm), where m is the arity of

the connective. For example, o(p) would be a new unary connective called o,

and pt(p,q,r) would be a ternary connective called pt.

– default: an optional field providing a default output. This is useful when a

truth table has the same output for many entries.

– restrictions: a list indicating outputs for specific entries. The format of each

element is [v1,...,vm]:[o1,...,on], where m is the arity of the connective.

We allow for the use of the underscore as a wildcard to indicate that for every

value in that position we want the indicated output. For example, by writing

[,u], we want to affect entries with inputs (f ,u), (u,u) and (t,u). Internally,

each restriction is processed top-down, and restrictions at upper positions are

overwritten by ones in lower positions.

After describing the matrix, we must provide a discriminator for it, since the algorithm

requires sufficient expressiveness. We do this in the section discriminator, and the

format of the input is just like the table provided in Example 82: one row per value, and

one column per each set of distinguished values. Each entry contains the set of separators

for the corresponding value and set of distinguished values.

The next fields deal with the simplification options for the produced H-system

(see Propositions 91, 93 and 94):

• simplify overlap: activates the simplification by removing instances of overlap.

137

• simplify dilution: activates the simplification by removing instances of dilution.

• simplify by cuts: activates the simplification by cut for formulas.

• simplify subrules deriv: optional field indicating the maximum depth of a deriva-

tion when trying to simplify by deriving subrules.

• simplify derivation: optional field indicating the maximum number of rules

allowed to be removed when simplifying the calculus by attempting to derive one

rule from the others. This value is useful when the simplification is taking too long

because the calculus may have gotten to a maximal level of simplification. In that

case, reducing the value will make the process terminate earlier. The output in the

terminal helps to see when that happens.

The next section, called derive, is totally optional and allows us to specify a list

of statements of interest, and, for each of them, the program will run the proof-search

algorithm described in Algorithm 4.1, printing in the terminal the produced tree, be it a

proof or a failed attempt.

Finally, we may provide LATEX translations of the symbols produced by the

algorithm in section latex. This is another section that is not modified very often, unless

new symbols are added to the description of the nd-B-matrix.

We close by showing another example of input file, this time for the 5-valued

nd-B-matrix of Example 20 and Chapter 6:
1 pnmatrix:
2 values: [I, T, F, t, f]
3 distinguished_sets:
4 - [I, T, t]
5 - [I, T, f]
6 interpretation:
7 p or q:
8 default: [f]
9 restrictions:

10 - [I, _]: [t, I]
11 - [T, _]: [t, I]
12 - [t, _]: [t, I]
13 - [_, I]: [t, I]

138

14 - [_, T]: [t, I]
15 - [_, t]: [t, I]
16 p and q:
17 default: [t, I]
18 restrictions:
19 - [F, _]: [f]
20 - [f, _]: [f]
21 - [_, F]: [f]
22 - [_, f]: [f]
23 p -> q:
24 restrictions:
25 - [F, _]: [t, I]
26 - [f, _]: [t, I]
27 - [_, I]: [t, I]
28 - [_, T]: [t, I]
29 - [_, t]: [t, I]
30 - [I, F]: [f]
31 - [I, f]: [f]
32 - [T, F]: [f]
33 - [T, f]: [f]
34 - [t, F]: [f]
35 - [t, f]: [f]
36 neg p:
37 restrictions:
38 - [T]: [F]
39 - [F]: [T]
40 - [t]: [f]
41 - [f]: [t, I]
42 - [I]: [t, I]
43 o(p):
44 default: [T]
45 restrictions:
46 - [I]: [F]
47 discriminator:
48 I: [[p], [o(p)], [p], []]
49 T: [[o(p),p], [], [p], []]
50 F: [[], [p], [], [p]]
51 t: [[p], [], [], [p]]
52 f: [[], [p], [p], []]
53 simplify_overlap: true
54 simplify_dilution: true
55 simplify_by_cuts: true
56 simplify_subrules_deriv: 9
57 simplify_derivation: 8
58 latex:
59 "->": "\\to"

139

60 p: "\\varphi"
61 p1: "\\varphi"
62 p2: "\\psi"
63 p3: "\\phi"
64 p4: "\\sigma"
65 q: "\\psi"
66 r: "\\phi"
67 o: "\\circ"
68 and: "\\land"
69 or: "\\lor"
70 f: "\\mathbf{f}"
71 t: "\\mathbf{t}"
72 neg: "\\neg"

Running the program

Assume that the YAML file is named /path/to/bmatrix-description.yml. In

order to run the algorithm on this input, just execute the following command in the

terminal (assuming Docker is being used):
1 docker run -v /path/to/:/input logicantsy \
2 ./ltsy axiomatize-monadic-matrix -f /input/bmatrix-example.yml \
3 -o latex -s /input/result.tex

This produces the result.tex file in the folder /path/to. We may then compile it to a

PDF file as usual. Another possibility is to output the result in the terminal directly:
1 docker run -v /path/to/:/input logicantsy \
2 ./ltsy axiomatize-monadic-matrix -f /input/bmatrix-example.yml -o plain

A third possibility is to output the resulting proof system in a new yaml file, so

that it can be used to run the proof-search algorithm multiple times without the need to

regenerate the proof system every time. The command for this is:
1 docker run -v /path/to/:/input logicantsy \
2 ./ltsy axiomatize-monadic-matrix -f /input/bmatrix-example.yml \
3 -o yaml -s /input/result.yaml

See the next subsection to better understand the generated file and to see how to employ

it in performing proof search over the proof system it describes.

140

You may find examples of outputs in the repository, under the directory examples/outputs.

Proof search using a generated YAML file

The YAML file that the axiomatization tool generates looks like the following:
1 calculus:
2 r2: [[],[],["p1 and p2"],["p1", "p2"]]
3 r6: [[],[],["p1"],["p1 and p2"]]
4 r8: [[],[],["p2"],["p1 and p2"]]
5 r12: [["p1 and p2"],["p1"],[],[]]
6 r13: [["p1 and p2"],["p2"],[],[]]
7 r19: [["p1", "p2"],["p1 and p2"],[],[]]
8 r1: [[],[],[],["bot"]]
9 r14: [["bot"],[],[],[]]

10 r9: [[],["neg p1"],["p1"],[]]
11 r11: [[],["p1"],["neg p1"],[]]
12 r15: [["neg p1"],[],[],["p1"]]
13 r17: [["p1"],[],[],["neg p1"]]
14 r3: [[],[],["p1 or p2"],["p1"]]
15 r4: [[],[],["p1 or p2"],["p2"]]
16 r7: [[],[],["p1", "p2"],["p1 or p2"]]
17 r16: [["p1 or p2"],["p1", "p2"],[],[]]
18 r18: [["p1"],["p1 or p2"],[],[]]
19 r20: [["p2"],["p1 or p2"],[],[]]
20 r5: [[],[],["top"],[]]
21 r10: [[],["top"],[],[]]
22 analyticity_formulas: ["p"]
23 simplify_overlap: false
24 simplify_dilution: false
25 simplify_by_cuts: false
26 simplify_by_subrule_deriv: 0
27 prem_conc_correspondence: [[0,1],[2,3]]
28 sequent_dset_correspondence: [0,1,2,3]
29 simplify_max_level: 0
30 derive:
31 somerule: [["p2"],["p1 or p2"],[],[]]

The generated proof system is described in the calculus section. All the other

attributes are there because this same input file can be used as input to another tool that

performs the proof search over that calculus, in order to derive the statements described

in the derive section. Attributes related to simplification can be set up just as in the

141

input file for the axiomatization procedure. The effect is that the simplification will be

performed right before the proof search starts. This is how this tool can be used:
1 docker run -v /path/to/:/input logicantsy \
2 ./ltsy analytically-derive -f /input/generated-calculus.yaml

The one-dimensional algorithm is also implemented

We should point out that this implementation also works for sufficiently expressive

one-dimensional matrices to produce analytic finite Set-Set H-systems, according to

the algorithm of [17]. The input file follows the same structure detailed before, we just

need to provide this time a single set of distinguished truth values and change the format

of the discriminator to have only two columns. Here is an example of an YAML file for

generating a finite analytic Set-Set H-system for the logic FDE (the one in Example 47,

but now containing also nullary connectives ⊤ and ⊥):
1 pnmatrix:
2 values: [bot, t, f, top]
3 distinguished_sets:
4 - [top, t]
5 interpretation:
6 p and q:
7 restrictions:
8 - [f, _]: [f]
9 - [_, f]: [f]

10 - [top, t]: [top]
11 - [bot, t]: [bot]
12 - [t, top]: [top]
13 - [t, bot]: [bot]
14 - [top, bot]: [f]
15 - [bot, top]: [f]
16 - [top,top]: [top]
17 - [bot,bot]: [bot]
18 - [t, t]: [t]
19 p or q:
20 restrictions:
21 - [t, _]: [t]
22 - [_, t]: [t]
23 - [top, f]: [top]

142

24 - [bot, f]: [bot]
25 - [f, top]: [top]
26 - [f, bot]: [bot]
27 - [top, bot]: [t]
28 - [bot, top]: [t]
29 - [top,top]: [top]
30 - [bot,bot]: [bot]
31 - [f, f]: [f]
32 neg p:
33 restrictions:
34 - [t]: [f]
35 - [f]: [t]
36 - [bot]: [bot]
37 - [top]: [top]
38 bot():
39 restrictions:
40 - []: [f]
41 top():
42 restrictions:
43 - []: [t]
44 discriminator:
45 top: [[p, neg p], []]
46 t: [[p], [neg p]]
47 f: [[neg p], [p]]
48 bot: [[], [p, neg p]]
49 simplify_overlap: true
50 simplify_dilution: true
51 simplify_by_cuts: true
52 simplify_derivation: 30
53 simplify_subrules_deriv: 30
54 latex:
55 "->": "\\to"
56 p: "\\varphi"
57 p1: "\\varphi"
58 p2: "\\psi"
59 p3: "\\phi"
60 q: "\\psi"
61 r: "\\phi"
62 and: "\\land"
63 or: "\\lor"
64 f: "\\mathbf{f}"
65 t: "\\mathbf{t}"
66 bot: "\\bot"
67 top: "\\top"
68 neg: "\\neg"

143

	Contents
	Introduction
	Theoretical background
	Algebras and languages
	A broad account of logic
	One-dimensional logics
	Consequence relations
	Logical matrices and entailment relations
	Suszko's thesis
	q-consequences and p-consequences

	Two-dimensional logics
	B-consequence relations
	B-matrices and B-entailment

	Deductive formalisms
	G-formalisms
	H-formalisms
	Signed formalisms

	Symmetrical H-systems
	Derivations as rooted labelled trees
	Symmetrical H-systems for one-dimensional consequence relations

	Two-dimensional Hilbert-style formalism
	Rules of inference and derivations
	Analyticity
	A proof-search and countermodel-search algorithm

	Analytic H-systems for non-deterministic B-matrices
	Sufficient expressiveness
	Axiomatizing non-deterministic B-matrices
	Simplifying the axiomatization
	Extracting a countermodel from a failed proof attempt

	Finite and analytic two-dimensional systems for non-finitely axiomatizable logics
	The logic mCi is not finitely axiomatizable in one dimension
	Combining two logical matrices into a nd-B-matrix
	A finite and analytic two-dimensional system for mCi

	Final remarks
	Bibliography
	Implementation of the axiomatization and proof-search algorithms

