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Cálculos de Hilbert para os principais fragmentos da
Lógica Clássica

Autor: Vitor Rodrigues Greati
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Resumo

A Lógica Clássica, sob a ótica da Álgebra Universal, pode ser vista como aquela induzida

pelo clone completo sobre o conjunto {0, 1}. Os demais clones sobre o mesmo conjunto

induzem, portanto, sublógicas ou fragmentos da Lógica Clássica. Em 1941, Emil Post

apresentou a organização de todos clones sobre {0, 1} em um reticulado ordenado por in-

clusão [10]. Em [11], Wolfgang Rautenberg explorou esse reticulado para demonstrar que

todos esses fragmentos são fortemente e finitamente axiomatizáveis. Rautenberg utilizou

uma notação pouco usual e a sobrecarregou diversas vezes, gerando confusão, além de ter

apresentado demonstrações incompletas e cometido vários erros tipográficos, imprecisões

e desacertos. Em especial, os principais fragmentos da Lógica Clássica — expressão aqui

utilizada para se referir àqueles dos quais tratam as demonstrações dos casos principais

apresentadas por Rautenberg na primeira parte de seu artigo — merecem uma apresen-

tação mais rigorosa e acessível, pois produzem importantes discussões e resultados sobre

os demais clones, além de embasarem os procedimentos recursivos da segunda parte da

demonstração do teorema da axiomatizabilidade de todos os clones bivalorados. Neste

trabalho, propõe-se uma reapresentação das demonstrações para esses fragmentos, desta

vez com uma notação mais moderna, com maior preocupação com os detalhes, com mais

atenção à corretude da escrita e com a inclusão de todas as axiomatizações dos clones

investigados. Além disso, os sistemas formais envolvidos serão especificados na linguagem

do assistente de demonstração Lean, e as demonstrações de completude serão verificadas

com a ajuda dessa ferramenta. Dessa forma, a demonstração do resultado apresentado por

Rautenberg estará apresentada de forma mais acessível, compreensível e confiável para a

comunidade.

Palavras-chave: fragmentos da Lógica Clássica, cálculos de Hilbert, reticulado de Post,

Álgebra Universal
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Abstract

Classical logic, under a universal-algebraic consequence-theoretic perspective, can be de-

fined as the logic induced by the complete clone over {0, 1}. Up to isomorphism, any

other 2-valued logic may then be seen as a sublogic or fragment of Classical Logic. In

1941, Emil Post studied the lattice of all the 2-valued clones ordered under inclusion [10].

In [11], Wolfgang Rautenberg explored this lattice in order to show that all fragments of

Classical Logic are strongly finitely axiomatizable. Rautenberg used an unusual notation

and overloaded it several times, causing confusion; in addition, he presented incomplete

proofs and made lots of typographical errors, imprecisions and mistakes. In particular,

the main fragments of Classical Logic — expression here that refers to those fragments

related to the proofs presented by Rautenberg in the first part of his paper — deserve a

more rigorous and accessible presentation, because they promote important discussions

and results about the remaining fragments. Also, they give bases to the recursive proce-

dures in the second part of the proof of the axiomatizability of all 2-valued fragments.

This work proposes a rephrasing of the proofs for the main fragments, with a more mod-

ern notation, with more attention to the details and the writing, and with the inclusion

of all axiomatizations of the clones under investigation. In addition, the involved proof

systems will be specified in the language of the Lean theorem prover, and the derivations

necessary for the completeness proofs will be verified with the aid of this tool. In this way,

the presentation of the proof of the result given by Rautenberg will be more accessible,

understandable and trustworthy to the community.

Keywords : fragments of Classical Logic, Hilbert calculi, Post’s lattice, Universal Algebra
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1 Introduction

Clones over a set A are sets of operations over A closed under projections and super-

positions. From a universal-algebraic consequence-theoretic perspective, Classical Logic

can be defined as the logic induced by the complete clone over {0, 1}. Up to isomorphism,

any other 2-valued logic may then be seen as a sublogic or fragment of Classical Logic.

For example, the clone generated by the classical conjunction and disjunction induces a

proper fragment of Classical Logic.

R1 R0
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M1 M0

M2

S20
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E
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Figure 1: Post’s lattice [3].



15

In 1941, Emil Post studied the lattice of all the 2-valued clones, ordered under inclu-

sion [10]. This lattice (Figure 1) —countably infinite yet constituted of finitely generated

members— has constituted ever since an invaluable source of information and insights

about the relationships among the sublogics of Classical Logic. Wolfgang Rautenberg, in

his study titled “2-element matrices” [11], explored Post’s lattice and proved that every

2-valued logic is strongly finitely axiomatizable. This result is specially important for the

study of combinations of fragments of Classical Logic [4], since Hilbert calculi constitute

more propitious environments for such investigations than other styles of proof systems,

like sequent calculi.

The proof of the mentioned result is constructive and is divided into two parts: the

main cases, which refer to specific clones located in the finite sections of the lattice; and

the reduction procedures, which deal with the infinite portions of the lattice based on

the main cases. Despite the relevance and originality of his study, Rautenberg adopted

an unusual notation and overloaded it several times for different clones, giving room for

confusion and hindering understanding and reproducibility. Moreover, he did not detail

various of the proofs of important ancillary results, and his paper contains numerous

typographic errors and imprecisions. In addition, some axiomatizations were not fully

presented, but had only their existences asserted by the author, and the ones that were

presented were done so in ways that do not favour easy and fast reference. Those facts

pose obstacles to the study of Rautenberg’s work and decrease the confidence in the proof

of such an important result for the study of the fragments of Classical Logic under the

perspective of the associated Hilbert calculi and their possible combinations. Therefore,

a more rigorous and accessible presentation of the proof of this result is necessary.

That being said, the purpose of the present work is to rephrase the proof of the axiom-

atizability of the thirty-eight clones located in the finite section of Post’s lattice, focusing

on correctly presenting all related arguments in full level of details and organization, using

a more modern and understandable notation, with the support and assurance of the Lean

theorem prover. Thus, at the end, we will have a clearly specified and easy to reference

calculus for each of those fragments — including those not fully presented by Rauten-

berg — with its adequacy being justified fundamentally on the basis of formally verified

derivations.

Essentially, carrying out this objective amounts to proposing a Hilbert calculus for

each of the referred fragments and proving the corresponding soundness and complete-

ness results. Many among such calculi and results were presented by Rautenberg, but need
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rewriting with a greater level of details, organization, accuracy and in a more clear nota-

tion. While the soundness results can be proved using a rather standard procedure, the

completeness results need a more sophisticated technique. The one used by Rautenberg

and to be also used in this work applies the Lindenbaum-Asser Lemma, considered the

most fundamental version of Lindenbaum Lemma to prove completeness in general [2].

Understanding such technique also gives us significant directions to search for rules

that lead to complete a calculus with respect to a given fragment of Classical Logic.

This is what we will use to produce the axiomatizations that were not fully presented

by Rautenberg. The most important case is the clone whose base set is {dc, pt}, where
dc = λx, y, z. (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) and pt = λx, y, z. x↔ y ↔ z. Although it seems

to have one of the most complex calculi among the other clones under consideration, only

two of the (interaction) rules were presented by Rautenberg; the other six were found in

the present study. Another case is the clone generated by {pt,¬}, for which Rautenberg

presented a calculus whose completeness proof was not provided and we could not verify. In

order to overcome this, we proposed a modification by adding a new rule of interaction and

removing two rules from the calculus given in Rautenberg’s paper. In the other hand, we

could neither verify the completeness of the calculus proposed by Rautenberg nor propose

another one to axiomatize the fragment {pt,⊥}. We then chose to keep Rautenberg’s

suggestion, but highlighting that this case needs further investigation.

The necessary derivations for proving completeness following the aforementioned

strategy can be hard to find and to correctly present, because some of them can be

very long and involving. This is where Lean comes into play: it will guarantee that each

derivation in the course of the completeness proofs is in accordance with the rules of

the corresponding proof systems. Lean is a project developed at Microsoft Research

that aims to support both mathematical reasoning and reasoning about complex sys-

tems, and to verify claims in both domains. It situates automated tools and methods

in a framework that supports user interaction and the construction of fully specified ax-

iomatic proofs [1]. Lean also has a very expressive language, a feature to be thoroughly

explored here, so much that we will directly use the Lean code to describe derivations

in the present document. The Lean code written for the present work is available at

https://github.com/greati/hilbert-classical-fragments and updates to this doc-

ument are available at https://vitorgreati.me/hcclf-monograph.

We proceed by giving, in Chapter 2, the theoretical background of this work, aiming

to fix the concepts and notations to be used in the remaining sections, as well as to give a

https://github.com/greati/hilbert-classical-fragments
https://vitorgreati.me/hcclf-monograph
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detailed presentation of Lindenbaum-Asser Lemma and to show how it can be applied for

completeness proofs with respect to logical matrices. Then, Chapter 3 focuses on deliv-

ering, in a tutorial-like fashion, how we can specify a Hilbert calculus in Lean and prove

that a given rule is amongst its derivable rules. In the sequel, Chapter 4 contains the

axiomatization of each main fragment of Classical Logic, together with the correspond-

ing adequacy proofs. Finally, Chapter 5 contains the final remarks and suggests future

directions of investigation.
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2 Theoretical background

2.1 Algebras and clones

A signature Σ = {Σ(k)}k∈ω is a family of sets of function symbols, where each

# ∈ Σ(k) is said to have arity k or, equivalently, to be k-ary. In particular, we use the

adjectives “nullary” (or “constant”), “unary”, “binary” and “ternary” in reference to symbols

with arity zero, one, two and three, respectively. Besides, for convenience, we shall use⋃
Σ in place of Σ when the context removes any risk of ambiguity about a signature Σ.

An algebra A over a signature Σ is a structure 〈A, ·A〉 where A 6= ∅ is a set

dubbed carrier or universe of the algebra and each symbol # ∈ Σ(k) is interpreted as a

k-ary operation #A over A. Notice that nullary symbols are interpreted as elements of

the carrier. When A is finite, we commonly specify the interpretations in A by tables and,

under the set-theoretical perspective that each m-ary #A is an (m+ 1)-ary relation over

A, we call each of its tuples — the rows of the tables — a determinant of #A.

Example 2.1.1. Consider the signature given by Σ(2) = {t,u} and Σ(n) = ∅, for all n 6= 2.

An example of an algebra over Σ is C := 〈{♣,♥}, ·C〉, such that

x y tC(x,y)

♥ ♥ ♥
♥ ♣ ♣
♣ ♥ ♣
♣ ♣ ♣

x y uC(x,y)

♥ ♥ ♥
♥ ♣ ♥
♣ ♥ ♥
♣ ♣ ♣

By inspecting the table of tC, we extract the set of its determinants:

{〈♥,♥,♥〉, 〈♥,♣,♣〉, 〈♣,♥,♣〉, 〈♣,♣,♣〉}.

A homomorphism between two algebras A and B over a common signature Σ is
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a mapping h : A → B such that h(#A(x1, . . . , xk)) = #B(h(x1), . . . , h(xk)), for each

# ∈ Σ(k) and all x1, . . . , xk ∈ A. An algebra A is an absolutely free algebra freely

generated by a set G ⊆ A when A is generated by G (the least algebra over Σ that

includes G in its carrier), and any mapping from G to the carrier B of any algebra B over

Σ can be (uniquely) extended to a homomorphism from A to B.

An important universal-algebraic definition that we will use to define Classical Logic

and its fragments is that of a clone of an algebra. We begin by first establishing what is

a clone over a set. A clone over a set A is a collection C of operations over A such that

• C is closed under projections; i.e. every operation πni (x1, . . . , xn) = xi, for all 1 ≤
i ≤ n and all n > 1, is in C;

• C is closed under superpositions, that is, whenever an n-ary operation f is in C
and the m-ary operations g1, . . . , gn are in C, the m-ary operation h such that

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) is also in C. We say here that

the operation h obtained this way is f-headed; and

• whenever a constant function f is in C, i.e. f(x1, . . . , xn) = a for all x1, . . . , xn ∈ A
and a fixed a ∈ A, the nullary operation fa = a is also in C.

Clearly, the set of all operations (of every possible arity) over A is a clone, called the

complete clone over A and denoted by CA.

Given a set F of operations over A, the clone generated by F , denoted here by

Clo(F), is the smallest clone that contains F . The clone of an algebraM over Σ, namely

Clo(M), is the clone generated by the set of the fundamental operations of M, which are

those that interpret the symbols in Σ (check more results on this topic in [9, 8]).

We close this section with the notion of monotonic operations, important to char-

acterize some fragments and produce their axiomatizations (see Section 4.6). An m-ary

operation f over {0, 1} (seen here as a totally ordered set) is monotonic when, for all

~x = 〈x1, . . . , xm〉, ~y = 〈y1, . . . , ym〉 ∈ {0, 1}m, if ~x ≤ ~y, then f(~x) ≤ f(~y), where ≤ is the

lexicographical order on the cartesian product {0, 1}m.

Example 2.1.2. The set of all monotonic operations over {0, 1} is a clone (see Section 4.14).
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2.2 Languages and logics

A language over a signature Σ generated by a countable set P = {pi | i ∈ ω} of

propositional variables, denoted by LPΣ, is the absolutely free algebra over Σ freely

generated by P , where each k-ary symbol of Σ is assigned to some k-ary operation (com-

monly referred to as connective in this context) on LPΣ (the carrier of the language),

denoted here by the same symbol being interpreted. When the set P is clear from the

context, we shall omit it from the notation.

The countably-many elements of a language are called formulas, denoted here by cap-

ital Roman letters (A, B, . . .). Propositional variables, together with nullary connectives,

are called atomic formulas. A formula resulting from the application of a connective of

arity greater than one is called a compound, and the total number of connectives involved

in its construction is its complexity. When A is a compound formula #(A1, . . . ,An), we

say that A is #-headed. Moreover, where A is a formula, by Vars(A) we will denote the

set of propositional variables occurring in A.

The conception of language just introduced gives us two important properties: each

formula in a language is built up from atomic formulas by the application of its funda-

mental connectives in only one way (unique readability); and, for any algebra B over the

same signature as the language, any function from the set P of propositional variables into

B can be uniquely extended to a homomorphism from the language to B. An equivalent

formulation of the latter is to say that every such homomorphism is uniquely determined

by its restriction to the set of propositional variables.

Example 2.2.1. A conventional signature ΣCL for Classical Logic is such that ΣCL
(0) =

{⊥,>}, ΣCL
(1) = {¬}, ΣCL

(2) = {∨,∧,→} and ΣCL
(n) = ∅, for all n > 2. Examples of

formulas of LPΣCL
are p12, ¬p1, ¬(p2 ∨ p5), p2 → ⊥, (p1 ∧ p2) ∨ (p5 → p6) and >.

We can also consider a formula A ∈ L{pi1
,...,pim}

Σ , with il ∈ ω and 1 ≤ l ≤ m, as an

operation λpi1 , . . . , pim .A, said to be an m-ary derived connective of LPΣ.

Whenever Σ and Σ′ are signatures such that Σ ⊆ Σ′, we say that Σ is a fragment

of Σ′. Equivalently, Σ′ is said to be an expansion of Σ. The same terminology may be

applied to LPΣ and LPΣ′ , since Σ ⊆ Σ′ implies LPΣ ⊆ LPΣ′ .

Example 2.2.2. Let Σ→ be such that Σ→
(2) = {→} and Σ→

(n) = ∅, for all n 6= 2. Then

Σ→ is a fragment (the implicational fragment) of ΣCL.

When we deal with expansions of a language by new connectives, sometimes it is
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necessary to have a representation of the formulas of the expansion in terms of the con-

nectives of the original one, assigning atomic representations to formulas involving the new

connectives. In order to formalize such representation, let Σ and Σ+ be two signatures,

such that Σ ⊆ Σ+. Also, let P , V and V + be denumerable sets of propositional variables,

where V and V + are disjoint, and consider bijections f : P → V and f+ : LPΣ+\Σ → V +.

Then, we define the Σ-skeleton of a formula in LPΣ+ as the result of applying this formula

to the function skf,f
+

Σ : LPΣ+ → LV ∪V
+

Σ , such that:

skf,f
+

Σ (C) =


f(C) C ∈ P,

#(skf,f
+

Σ (C1), . . . , skf,f
+

Σ (Cn)) C = #(C1, . . . ,Cn) and # ∈ Σ(n),

f+(C) otherwise.

Notice that the function just defined is a bijection and its inverse has a very similar

definition, essentially changing the application of f and f+ by their respective inverses.

Example 2.2.3. Take Σ(2) = {∧}, Σ+(2)
= {∧,∨}, and Σ(n) = Σ+(n)

= ∅ for all n 6= 2.

Also, let V = {p2i ∈ P | i ∈ ω}, V + = {p2i+1 ∈ P | i ∈ ω}, f(pi) = p2i, and f+(Ai) =

p2i+1, for a fixed enumeration {Ai}i∈ω of the formulas in LPΣ+\Σ. Then, assuming that

C := (p2 ∨ p3) ∧ p4 has index 2 in the enumeration, we have skf,f
+

Σ (C) = p5 ∧ p8.

We define now a mechanism for representing a connective in a signature in terms

of derived connectives in a different language. Given two signatures Ξ and Σ, a (ho-

mophonic) translation is a mapping t : Ξ → LPΣ such that, for each # ∈ Ξ(k),

t(#) ∈ L{p1,...,pk}
Σ , with t(#) interpreted as a k-ary derived connective of LPΣ. A transla-

tion t naturally extends to a function t : LPΞ → LPΣ by letting t(p) = p, for p ∈ P , and
t(#(A1, . . . ,Ak)) := t(#)(t(A1), . . . , t(Ak)). We will often use translations in this study

to express non-conventional connectives of some fragments of Classical Logic in terms of

the conventional ones, like ∧, ∨ and →.

Given a language LPΣ, a substitution is an endomorphism on LPΣ. The collection of all

substitutions over the language is denoted by Sb(LPΣ). The application of a substitution σ

to a formula A is denoted by σ(A) or Aσ and this naturally extends to each set of formulas

Π by letting σ(Π) = Πσ = {Aσ | A ∈ Π}.

A consequence relation over the language LPΣ is a relation `⊆ Pow(LPΣ) × LPΣ

respecting, for every Γ ∪∆ ∪ {A} ⊆ LPΣ, the following properties (read Γ,∆ as Γ ∪∆):

(R) Reflexivity: A ` A;

(M) Monotonicity: if Γ ` A, then Γ,∆ ` A;
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(T) Transitivity: if Γ ` B for every B ∈ ∆ and Γ,∆ ` A, then Γ ` A; and

(S) Substitution-invariance: if Γ ` A, then Γσ ` Aσ.

We will often use in this work, under the same name, the specialized version of (T) in

which ∆ is a singleton.

A consequence relation is finitary when it respects

(F) Finitariness: if Γ ` A, then there is a finite set Γ0 ⊆ Γ such that Γ0 ` A.

A logic L over a signature Σ is then a structure 〈Σ,`〉, where ` is a consequence

relation over LPΣ. We shall sometimes talk about a logic by referring directly to its con-

sequence relation. Assertions of the form Γ ` A are called consecutions, and may be

read as “A follows from Γ (according to L)”. A formula A for which ` A is said to be a

theorem of L. A set Γ ⊆ LPΣ is a theory of L whenever Γ ` A implies A ∈ Γ.

A set Γ ⊆ L is maximal (consistent) with respect to a consequence relation ` over

the language L when Γ 6` A for some A ∈ L and, for any A 6∈ Γ, we have Γ,A ` B for

all B ∈ L. The set Γ is relatively maximal with respect to ` when there is a formula

Z ∈ L such that Γ 6` Z and Γ,A ` Z for any A 6∈ Γ. Under those conditions, we also say

that such Γ is Z-maximal with respect to `.

We present now the notion of axiomatic expansion, which eases the axiomatization

of numerous fragments of Classical Logic. Let Σ and Σ+ be two signatures, such that

Σ ⊆ Σ+, that is, Σ+ expands Σ. Also, let ` and `+ be consequence relations over LΣ and

LΣ+ respectively. Then, whenever ` ⊆ `+, `+ is said to be an expansion of `. Given a

set Λ ⊆ LΣ+ , the axiomatic expansion of ` induced by Λ, denoted by `+Λ, is the

least expansion of ` where `+Λ Aσ, for each A ∈ Λ and σ ∈ Sb(LPΣ).

Some important properties of a logic may be described as rules over linguistic objects

called sequents. A sequent over a signature Σ is an object of the form Γ � A, where

Γ∪{A} ⊆ LPΣ is finite. An n-ary sequent-style rule r is given by a sequence of sequents

∆1 � A1, . . . ,∆n � An,∆ � A, where the last is the conclusion sequent and the others are

the premiss sequents. Another notation for r is

∆1 � A1 · · · ∆n � An

∆ � A
r

We say that such sequent-style rule holds in a consequence relation ` over Σ when, for
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all σ ∈ Sb(LPΣ) and all Γ ⊆ LPΣ,

if Γ,∆σ
1 ` Aσ

1 and . . . and Γ,∆σ
n ` Aσ

n then Γ,∆σ ` Aσ.

Example 2.2.4. The following rules hold in any consequence relation, as a direct conse-

quence of properties (R), (M) and (T):

A � A
R

A � B
C,A � B

M1
A � B B � C

A � C
T1

D,A � B D,B � C
D,A � C

T2

Sequent-style rules will be specially important because the properties that lead to the

completeness of the calculi discussed in this work can be seen as sequent-style rules and,

as we will see in Section 2.8, they are preserved in axiomatic expansions, a result that

automatically provides axiomatizations for expansions by the constant >.

Finally, we say that a function g : LPΣ → {0, 1} is consistent with a consequence

relation ` over Σ when, for all Γ ∪ {A} such that Γ ` A, if g(Γ) ⊆ {1}, then g(A) = 1.

2.3 Hilbert calculi

A Hilbert calculus H is a structure 〈Σ, R〉, where Σ is a signature and R is the

set of inference rules, where each r ∈ R is a relation r ⊆ LΣ
n+1, with n ∈ ω being its

arity. Nullary rules are dubbed axioms. Moreover, the way we specify an n-ary rule in

this work is by a schema of the form

A1 . . . An

An+1

r
.

By this we mean that 〈A1
σ, . . . ,An

σ,An+1
σ〉 ∈ r for every substitution σ. We may write

such schema in inline form using the syntax (r) A1, . . . ,An/An+1. The formulas A1, . . . ,An

are called premisses, while An+1 is the conclusion of r. Each ρ ∈ r is called an instance

of r. A rule involving more than one connective is called an interaction rule or mixing

rule.

A Hilbert calculus H := 〈Σ, R〉 induces a logic LH := 〈Σ,`H〉, where Γ `H B if

there is a sequence of formulas B1, . . . ,Bk, with k > 1, such that, for each 1 ≤ i ≤ k,

either (i) Bi ∈ Γ, or (ii) Bi is an instance of an axiom of H, or (iii) Bi results from an

application of an m-ary rule r ∈ R to earlier formulas Bi1 , . . . ,Bim in the sequence, i.e.

〈Bi1 , . . . ,Bim ,Bi〉 ∈ r, with il < i for all 1 ≤ l ≤ m. The aforementioned sequence is

called a derivation or deduction of B from Γ. Aside from having properties (R), (M) and
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(T), the relation `H is also finitary given the finite character of the derivations. When

Cσ
1 , . . . ,C

σ
n `H Cσ

n+1, for some Ci ∈ LPΣ, with 1 ≤ i ≤ n, and all σ ∈ Sb(LPΣ), we say that

the rule
C1 . . . Cn

Cn+1

is derivable in H.

Example 2.3.1. A proof-theoretical characterization of Classical Logic is given by the

following Hilbert Calculus over ΣCL:

Hilbert Calculus 1. B

A A→ B
B

cl1

A→ (B→ A)
cl2

(A→ (B→ C))→ ((A→ B)→ (A→ C))
cl3

(A ∧ B)→ A
cl4

(A ∧ B)→ B
cl5

A→ (B→ (A ∧ B))
cl6

A→ (A ∨ B)
cl7

B→ (A ∨ B)
cl8

(A→ C)→ ((B→ C)→ ((A ∨ B)→ C))
cl9

(A→ B)→ ((A→ ¬B)→ ¬A)
cl10

¬¬A→ A
cl11

> cl12
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⊥ → A
cl13

2.4 Logical matrices

A logical matrixM over a signature Σ is a structure 〈M, D〉, where M is an algebra

over Σ whose carrier M is the collection of truth-values, and D ⊆ M is the set of

designated values. For each # ∈ Σ, let #M denote the interpretation of # in the algebra

M, that is #M := #M. The definition of a clone naturally extends to the one of the clone

of a logical matrix, by letting Clo(M) := Clo(M).

A valuation overM or anM-valuation is a homomorphism from the algebra language

LPΣ into M; in other words, the set of all such valuations, denoted here by ValP (M),

coincides with Hom(LPΣ,M). We say that a valuation v over M satisfies a formula A if

v(A) ∈ D and that it satisfies a set of formulas Γ if v(Γ) ⊆ D, with v(Γ) = {v(A) | A ∈ Γ}.
Where Γ ∪ {A} ⊆ LPΣ, let Γ `

M
A if and only if every M-valuation that satisfies Γ also

satisfies A. Then we can show that LM = 〈Σ,`
M
〉 is a logic (i.e. `

M
satisfies (R), (M),

(T) and (S)) and we call it the logic characterized by M.

A Hilbert calculus H is sound with respect to a logical matrix M when `H ⊆`M.

Conversely, it is complete with respect to M when `M⊆`H . In addition, the calculus

H axiomatizes M when it is sound and complete with respect to M. We also say that

this calculus is an axiomatization or is adequate for M.

Finally, we present a key construction that allows us to produce a matrix for a given

signature based on a known matrix and a translation. Given signatures Ξ and Σ, a

translation t : Ξ → LPΣ and a logical matrix M = 〈M, D〉 over Σ, we may say that

M induces an interpretation #M : Mk → M under t for each # ∈ Ξ(k), such that

#M(a1, . . . , ak) = v(t(#)), where v is anyM-valuation for which v(pi) = ai for 1 ≤ i ≤ k.

We denote by Mt the logical matrix over Ξ with the same truth-values and designated

values as M whose interpretations for each symbol in Ξ are the induced interpretations

under t.

2.5 Classical Logic and its fragments

For any desired signature Σ, denote by 2Σ an algebra over Σ whose carrier is the set

{0, 1} and by 2Σ the logical matrix 〈2Σ, {1}〉, also called here a 2-matrix. Additionally,
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let BΣ be the logic characterized by 2Σ, i.e. BΣ := L2Σ
. Classical logic is then defined

as the logic characterized by any 2-matrix 2Σ such that Clo(2Σ) = C{0,1}.

Example 2.5.1. A common matrix for Classical Logic is 2 := 2ΣCL
, whose algebra is 2,

given previously.

It is well-known that some combinations of these operations (for instance, those

for ¬ and ∧) are functionally complete, so Clo(2ΣCL
) = C{0,1}.

Any other 2-matrix characterizes a fragment of Classical Logic. Of course, the

ones of interest in this work are the proper fragments. Henceforth, whenever # ∈ ΣCL

appears in the context of a fragment, we will use the interpretation #2 given in the

previous example. Moreover, whenever connectives other than those of ΣCL appear in a

signature Σ of a fragment of Classical Logic, we will present a translation t : Σ → LPΣCL

such that 2Σ = 2tΣCL
.

Example 2.5.2. The matrix 2∧,∨,>,⊥ is a proper fragment of Classical Logic, since antitone

functions like ¬2 are not in Clo(2∧,∨,>,⊥).

In [10], Emil Post studied the collection of all clones over {0, 1}, characterizing it as a

countable1 lattice ordered under inclusion, known as Post’s lattice, whose members are

all finitely generated, i.e. generated by a finite set of operations over {0, 1}. This means

that there is a corresponding 2-matrix for each of those clones, allowing us to see Post’s

lattice as the lattice of all fragments of Classical Logic. Since its characterization, this

lattice has been used to investigate properties of such fragments and their relationships.

In one of these explorations of Post’s lattice, Wolfgang Rautenberg encountered finite

axiomatizations for each fragment of Classical Logic [11]. In the next chapter, we will

study most of them in detail. As a convention, for any given Σ, we will denote by BΣ the

calculus that we claim to be adequate for the classical fragment 2Σ.

2.6 Lindenbaum-Asser Lemma

In this section, we present in details the Lindenbaum-Asser Lemma, which allows us to

produce relatively maximal theories for non-trivial finitary logics. This result is a powerful

tool for proving the completeness of a calculus and it is used exhaustively throughout this

work.
1Curiously, collections of clones over sets with larger cardinality turn out to be uncountable.
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Theorem 2.6.1. For any finitary consequence relation `⊆ Pow(L)×L and any Γ∪{Z} ⊆
L, if Γ 6` Z, then there exists a set Γ+ ⊇ Γ such that

(i) Γ+ 6` Z;

(ii) Γ+,B ` Z, for any B 6∈ Γ+; and

(iii) the characteristic function of Γ+ is consistent with `, verifying all of Γ+ and falsifying

Z.

Proof. Let ` be a finitary consequence relation over a language L. Suppose that Γ 6` Z,

for some Γ ∪ {Z} ⊆ L. Then consider an enumeration A1, . . . ,An, . . . of the formulas of

L, and define the sequence {Γi}∞i=0 by setting

Γ0 = Γ

Γi+1 =

Γi ∪ {Ai+1} if Γi,Ai+1 6` Z,

Γi otherwise.

Finally, define Γ+ :=
⋃∞
i=0 Γi. First of all, notice that (a): Γi 6` Z, for each i, a fact

that can be easily proved by induction: the base case holds because Γ 6` Z, and assuming

Γk 6` Z, for some k > 0, directly from the above construction and the induction hypothesis

we get Γk+1 6` Z. Since Γ = Γ0 ⊆ Γ+, it remains to verify (i), (ii) and (iii).

For (i), suppose that Γ+ ` Z. Then, since ` is finitary, there is some finite Θ ⊆ Γ+

such that Θ ` Z. Since Θ ⊆ Γi, for some i, we get, by (M), Γi ` Z, which contradicts (a).

Then Γ+ 6` Z.

For (ii), if B 6∈ Γ+, then B 6∈ Γ and, in case B = Ak+1, Γk+1 = Γk (otherwise

Ak+1 = B ∈ Γ+), what is possible only if Γ,Ak+1 ` Z, according to the construction given

above.

For (iii), let µ+ be the characteristic function of Γ+, that is µ+(A) = 1 if, and only if,

A ∈ Γ+. Clearly, µ+(Γ) ⊆ {1}. By assuming µ+(Z) = 1, we have Z ∈ Γ+, and, by appealing

to (R) and (M), Γ+ ` Z, contradicting (i). Consistency with ` can be proved again by

contradiction: assume that µ+ is not consistent with `. Then, there is Θ ∪ {A} ⊆ L such

that Θ ` A, but µ+(Θ) ⊆ {1} and µ+(A) = 0. Because ` is finitary, Θ0 ` A for some

finite Θ0 ⊆ Θ. Because µ+ is the characteristic function of Γ+, A 6∈ Γ+ and, using that

µ+(Θ0) ⊆ {1}, Θ0 ⊆ Γ+. Let k be the greatest index of the formulas in Θ0 and l be

the index of A, considering the enumeration A1, . . . ,An, . . . used in the construction of

Γ+. Thus Θ0 ⊆ Γk, and, because Θ0 ` A, (b): Γk ` A by (M). Moreover, since A 6∈ Γ+,

A 6∈ Γl, meaning that (c): Γl,A ` Z, by (ii). Let m = max{k, l}, then Γk,Γl ⊆ Γm. This
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fact, together with (b) and (c), leads to (b)’: Γm ` A and (c)’: Γm,A ` Z. By (T) from

(b)’ and (c)’, Γm ` Z, which, by (M), implies Γ+ ` Z, contradicting (i).

Corollary 2.6.1.1. For Γ+ and Z as given in Theorem 2.6.1, we have Γ+,B 6` Z iff B ∈
Γ+.

Proof. The left-to-right direction is the contrapositive version of (ii). For the right-to-left,

the proof goes by contradiction: suppose that Γ+,B ` Z and B ∈ Γ+. Then Γ+ ` Z, which

is impossible in view of Theorem 2.6.1 (i).

Corollary 2.6.1.2. The relatively maximal set Γ+ constructed in the proof of Theo-

rem 2.6.1 is deductively closed, namely, for all A ∈ L,

Γ+ ` A iff A ∈ Γ+.

Proof. Suppose that Γ+ is Z-maximal. The right-to-left direction follows by appealing to

(R) and (M). For the left-to-right direction, using the contrapositive version, assume that

(a): A 6∈ Γ+. The proof goes by contradiction: suppose that (b): Γ+ ` A. Because of (a),

Theorem 2.6.1 (ii) leads to (c): Γ+,A ` Z. Then, (T) applied to (b) and (c) results in

Γ+ ` Z, contradicting the fact that Γ+ is Z-maximal.

Finally, the following result gives sufficient conditions for a relatively maximal set

being nonempty when we are dealing with consequence relations sound with respect to

some logical matrix. It plays an important role in some completeness proofs presented in

Chapter 4.

Lemma 2.6.2. If ` is a consequence relation over Σ and `⊆`M, for some logical matrix

M having no tautologies and at least one designated value, then every Z-maximal set with

respect to ` is non-empty.

Proof. Let Γ+ ⊆ LPΣ be a Z-maximal set with respect to some consequence relation `
over Σ, and suppose that `⊆`M for some logical matrix M having no tautologies and at

least one designated value, say a. We want to show that Γ+ 6= ∅. Work by contradiction:

suppose that Γ+ = ∅, then A ` Z for each formula A, by Corollary 2.6.1.1. In particular,

(a): p ` Z, for some propositional variable p 6∈ Vars(Z). Since Z is at least a contingent for-

mula with respect toM, take anM-valuation v such that v(Z) = u, for some undesignated

value u, and consider another valuation v? that agrees with v but gives the assignment

v?(p) = a. Then, v?(p) = a, but v?(Z) = u, hence p 6`M Z and so p 6` Z, contradicting

(a).
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2.7 Completeness via relatively maximal theories

We describe now a general procedure for proving the completeness result of a calculus

with respect to a fragment of Classical Logic. Given a signature Σ, a logical matrix 2Σ

and a Hilbert calculus B over Σ, the (strong) completeness result consists in proving that

`2Σ
⊆ `B . By contraposition, this amounts to showing that, for all Γ ⊆ LΣ and A ∈ LΣ,

if Γ 6`B A then Γ 6`2Σ
A.

With this purpose, assume that Γ 6`B Z, for some Γ ⊆ LΣ and Z ∈ LΣ. Since `B

is finitary, the Lindenbaum-Asser Lemma (Section 2.6) guarantees that there is a set

Γ+ ⊇ Γ such that Γ+ 6`B Z and the characteristic function µ+ of Γ+ is a candidate for

a 2Σ-valuation consistent with `B . Since Γ ⊆ Γ+, µ+(Γ) ⊆ {1} also holds, meaning that

Γ 6`2Σ
Z, the desired result for completeness.

The crucial step is then proving that µ+, as stated above, is indeed an 2Σ-valuation.

Formally, this assertion means that for each # ∈ Σ(n), with n ∈ ω,

µ+(#(A1, . . . ,An)) = 1 iff #2Σ(µ+(A1), . . . , µ+(An)) = 1, (2.1)

where #2Σ is the interpretation of the connective # in 2Σ. The right-hand side of that

condition is equivalent to the meta-disjunction of the k meta-conjunctions of the form

µ+(A1) = αj1 and . . . and µ+(An) = αjn corresponding to each of the k determinants

〈αj1, . . . , αjn, 1〉 of the truth-function of #2Σ , where 1 ≤ j ≤ k. Because µ+(A) = 1 iff A ∈
Γ+, proving assertion 2.1 is equivalent to proving the property

#(A1, . . . ,An) ∈ Γ+ (#)

iff

(A1 @−1
1 Γ+ and . . . and An @−1

n Γ+) or . . . or (A1 @−k1 Γ+ and . . . and An @−kn Γ+),

where @−ji =∈ if αji = 1, and @−ji = 6∈ otherwise. Notice that if # is nullary and #2Σ = 1,

the property (#) reduces to # ∈ Γ+, and, in the case #2Σ = 0, it becomes # 6∈ Γ+.

Depending on the truth-table of the connective # in 2Σ, the expression of property (#)

can be highly simplified, easing the path to prove it.

Example 2.7.1. Let us find the completeness property for ∨, namely (∨). By inspecting

its truth-table (see Example 2.5.1), the determinants of interest are 〈0, 1, 1〉, 〈1, 0, 1〉 and
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〈1, 1, 1〉. The specialization of the expression in property (#) for the case of ∨ gives us

A1 ∨ A2 ∈ Γ+

iff

(A1 6∈ Γ+ and A2 ∈ Γ+) or (A1 ∈ Γ+ and A2 6∈ Γ+) or (A1 ∈ Γ+ and A2 ∈ Γ+)

that can be simplified to

A1 ∨ A2 ∈ Γ+ iff A1 ∈ Γ+ or A2 ∈ Γ+.

Since proving the aforementioned property for every connective in the language of

the calculus under consideration means that µ+ is a 2Σ-valuation, and, as it was already

shown, µ+(Γ) ⊆ {1} but µ+(Z) = 0, the conclusion is that Γ 6`2Σ
Z, finishing the com-

pleteness proof. This method is repeatedly applied in Chapter 4 to prove the completeness

of the proposed calculus for each of the fragments of Classical Logic under study.

Remark 2.7.2. The technique just described can be naturally extended for logical matrices

with more than two values. In such case, we have to look for an appropriate mapping to

play the role of µ+ and to express property (#) in terms of the set of designated values

of the matrix.

2.8 Axiomatic Expansion Lemma

Numerous fragments of Classical Logic, under the perspective of 2-matrices, result

from other fragments by adding the nullary operation > to their base set of operations. If

the properties necessary for completeness of a calculus in the reducts are preserved in the

expansions, then axiomatizing the calculus of the expansion becomes an easy task. The

main goal of this section is to show that sequent-style rules are preserved in countable

axiomatic expansions, a result from which the completeness of all calculus resulting from

expansions by the constant > trivially follows (see [5] for a more general version).

Before getting into it, some preliminary results are due. The first of them shows that

the notion of reasoning with new axioms in an expanded language can be equivalently

expressed by using them either as assumptions in the least expanded logic or incorporating

them by means of the axiomatic expansion notion.

Lemma 2.8.1. Let Σ and Σ+ be signatures such that Σ+ expands Σ, and let ` be a

consequence relation over Σ. Then, where Λ ⊆ LPΣ+ and `+ is the smallest expansion of
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` to LPΣ+, the following equivalence holds:

for all Γ ∪ {C} ⊆ LPΣ+ . Γ `+Λ C iff Γ,S(Λ) `+ C, (∗a)

where S(Λ) = {Aσ | A ∈ Λ, σ ∈ Sb(LPΣ+)}.

Proof. Consider the relation `0 such that Γ `0 B if, and only if, Γ,S(Λ) `+ B, where

`+ is the least expansion of ` in Σ+. Our goal now is to show that `0 is a consequence

relation over Σ+ that expands `. Notice that if Γ ` B, then Γ `+ B, which, by (M),

yields Γ,S(Λ) `+ B, thus Γ `0 B, so `0 expands `. Also, by (R) and (M), we have

{B},S(Λ) `+ B, then {B} `0 B, thus `0 respects the property (R). Moreover, if Θ ⊆ Γ

and Θ `0 B, then, by (M), Θ,Γ,S(Λ) `+ B, meaning that Γ,S(Λ) `+ B, thus Γ `+ B,

so that `0 respects property (M). Properties (T) and (S) also follow from those in `+.

Therefore, `0 is a consequence relation over Σ+ that expands `. Then, proving (∗a) is

equivalent to proving that `0 = `+Λ. With this aim, let `′ be an expansion of ` such

that `′ A for all A ∈ Λ. By definition of `0, if Γ `0 B, then Γ,S(Λ) `+ B. Hence, because

`+ is the least expansion of ` on LPΣ+ , we have (a): Γ,S(Λ) `′ B. Since (b): `′ A for all

A ∈ Λ, by (T) from (a) and (b), we get Γ `′ B, so `0 ⊆ `′, proving that `0 is the least

expansion of ` that incorporates the formulas in Λ as theorems, that is, `0 = `+Λ.

The next two lemmas establish relations between substitutions in the original and in

the expanded language, and in the original and in the least expanded logic, respectively.

Henceforth, we use skΣ to denote the skeleton function given in Example 2.2.3, with the

underlying enumeration of the formulas in LPΣ\Σ+ being {Qi}i∈ω.

Lemma 2.8.2. For signatures Σ and Σ+, such that Σ ⊆ Σ+, and a substitution e+ ∈
Sb(LPΣ+), there is a substitution e ∈ Sb(LPΣ) such that:

skΣ ◦ e+ = e ◦ skΣ.

Proof. Consider arbitrary signatures Σ and Σ+ such that Σ ⊆ Σ+, and a substitution

e+ ∈ Sb(LPΣ+). Then, let e = skΣ ◦ e+ ◦ sk−1
Σ . The equation of this lemma obviously holds

and, because skΣ and its inverse satisfy the homomorphism condition (see the definition

of skeleton in Section 2.2), e is a substitution.

Lemma 2.8.3. Let Σ and Σ+ be signatures such that Σ ⊆ Σ+, and let ` be a consequence

relation over Σ, with `+ being its least expansion over Σ+. Then, for Γ∪{A} ⊆ LPΣ+, the

following holds:

Γ `+ A iff skΣ(Γ) ` skΣ(A). (∗b)
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Proof. Let `0 be a relation such that Γ `0 A if, and only if, skΣ(Γ) ` skΣ(A). We proceed

by proving that `0 =`+. First, notice that `0 is a consequence relation because:

• (R) follows from the fact that skΣ(A) ` skΣ(A), since ` is a consequence relation;

• (M) follows since, if Θ `0 A, then skΣ(Θ) ` skΣ(A), and skΣ(Θ), skΣ(Γ) ` skΣ(A)

(because ` respects (M)), but, if Θ ⊆ Γ, then skΣ(Θ) ⊆ skΣ(Γ), so skΣ(Γ) ` skΣ(A),

and Γ `0 A;

• (T) follows because, if Γ,Θ `0 A and Γ `0 B for each B ∈ Θ, then skΣ(Γ), skΣ(Θ) `
skΣ(A) and skΣ(Γ) ` skΣ(B) for each B ∈ Θ, so skΣ(Γ) ` B′, for each B′ ∈ skΣ(Θ),

leading to skΣ(Γ) ` skΣ(A) (by (T) of `), thus Γ `0 A; and

• (S) follows from Lemma 2.8.2.

Notice that sk∗Σ, the restriction of skΣ to LΣ, is a substitution (this follows directly from

the definition of a skeleton given in Section 2.2), so, if Γ ` A, then, by (S), sk∗Σ(Γ) ` sk∗Σ(A),

and, by the definition of `0, Γ `0 A, thus `0 expands `.

Now, let `′ be a consequence relation over Σ+ that expands `. For Γ ∪ {A} ⊆ LPΣ+ ,

suppose that Γ `0 A, so by the definition of `0, skΣ(Γ) ` skΣ(A). Define the function

b : LPΣ+ → LPΣ+ such that:

b(C) =


pi if C = p2i,

Qi if C = p2i+1,

#(b(C1), . . . , b(Cn)) ifC = #(C1, . . . ,Cn).

Notice that the third case in this definition makes b a substitution on LPΣ+ . Because

`⊆`′, we have skΣ(Γ) `′ skΣ(A), and, since b ∈ Sb(LPΣ+) and `′ is a consequence relation,

b(skΣ(Γ)) `′ b(skΣ(A)), thus Γ `′ A, given that b ◦ skΣ is the identity on LPΣ+ (by

restricting b to LPΣ). This shows that `0⊆`′, thus `0 =`+.

It is worth noting that (for sk∗Σ as defined in the lemma above), because sk∗Σ is a

substitution on LPΣ:

if d ∈ Sb(LPΣ) then d ◦ sk∗Σ ∈ Sb(LPΣ). (∗d)

Theorem 2.8.4. A sequent-style rule that holds in a consequence relation ` over Σ holds

in each (countable) axiomatic expansion of `.
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Proof. Let Σ be an arbitrary signature, and consider a sequent-style rule over Σ having

the form ∆1 � C1, . . . ,∆n � Cn/∆ � C, and assume that it holds in `, that is, for all

σ ∈ Sb(LPΣ) and Γ ⊆ LPΣ:

if Γ,∆σ
1 ` Cσ

1 and . . . and Γ,∆σ
n ` Cσ

n then Γ,∆σ ` Cσ. (?)

Now, let Σ+ be a signature that expands Σ and let Λ ⊆ LΣ+ . In order to complete this

proof, the following needs to be proved, for all σ ∈ Sb(LPΣ+) and Γ ⊆ LPΣ+ :

if Γ,∆σ
1 `+Λ Cσ

1 and . . . and Γ,∆σ
n `+Λ Cσ

n then Γ,∆σ `+Λ Cσ (?+)

Accordingly, let σ ∈ Sb(Σ+) and Γ ⊆ LΣ+ . Suppose that Γ,∆σ
i `+Λ Cσ

i , for all

1 ≤ i ≤ n. Then the following reasoning proves the desired result (we change Cσ and ∆σ

to σ(C) and σ(∆), respectively, for better legibility):

(1) Γ, σ(∆i) `+Λ σ(Ci) Assumptions, all 1 ≤ i ≤ n

(2) S(Λ),Γ, σ(∆i) `+ σ(Ci) 1 ∗a

(3) skΣ(S(Λ)), skΣ(Γ), skΣ(σ(∆i)) ` skΣ(σ(Ci)) 2 ∗b

(4) skΣ(S(Λ)), skΣ(Γ), σ̄(skΣ(∆i)) ` σ̄(skΣ(Ci)) 3 Lemma 2.8.2 (e+ = σ and e = σ̄)

(5) skΣ(S(Λ)), skΣ(Γ), σ̄(skΣ(∆)) ` σ̄(skΣ(C)) 4 ∗d and ?

(6) skΣ(S(Λ)), skΣ(Γ), skΣ(σ(∆)) ` skΣ(σ(C)) 5 Lemma 2.8.2 (e+ = σ and e = σ̄)

(7) S(Λ),Γ, σ(∆) `+ σ(C) 6 ∗b

(8) Γ, σ(∆) `+Λ σ(C) 7 ∗a

Corollary 2.8.4.1. If BΣ is axiomatized by BΣ as a consequence of sequent-style rules,

then BΣ,> is axiomatized by the calculus resulting from the rules of BΣ together with the

nullary rule (t1) />.

Proof. Given Theorem 2.8.4, we only have to show that the consequence relation `BΣ,>

is the axiomatic expansion of `BΣ
determined by {>}, i.e. the least expansion of `BΣ

having > as theorem. First of all, notice that `BΣ,> >, given the presence of rule t1.

Also, it is clear that `BΣ,> expands `BΣ
, because BΣ,> has all the rules of BΣ. Now it

remains to show that `BΣ,> is the least expansion of `BΣ
having > as theorem. For that,

suppose that `BΣ
⊆`′, for some `′ having > as theorem. We will show that `BΣ,> ⊆`′ by

induction on a derivation in BΣ,>. So suppose that Γ `BΣ,> A and that this is witnessed

by a derivation A1, . . . ,An = A. Let P (i) mean the consecution Γ `′ Ai, so that P (n)
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is what we want for the present proof. For the base case, we have two possibilities: (i)

A1 ∈ Γ or (ii) A1 is an axiom instance of BΣ,>. For (i), apply (R) and (M) to get Γ `′ A1.

For (ii), it is clear that if `BΣ
A1 then `′ A1, since `′ expands `BΣ

, and, in case A1 = >,
we know that `′ >, so this possibility also lead to Γ `′ A1 by (M). For the inductive step,

suppose that P (j) holds for all 1 ≤ j < k with k > 1. Then we have three possibilities for

Ak: (i) and (ii), whose proofs are the same as before, and (iii) Ak results from the instance

〈Ak1 , . . . ,Akm ,Ak〉, for kl < k and 1 ≤ l ≤ m of anm-ary rule of BΣ,>. Since this rule must

also be a rule of BΣ, we have Ak1 , . . . ,Akm `′ A, thus, by (M), (a): Γ,Ak1 , . . . ,Akm `′ Ak.

Then, from (a) and the induction hypothesis, we get Γ `′ Ak by (T).
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3 Hilbert calculi on Lean

Lean is a programming language and a theorem prover that aims to support both

interactive and automated theorem proving in a general and unified framework [1]. It is

based on a version of dependent type theory called Calculus of Constructions [6], which

can express complex mathematical assertions, specify hardware and software, and reason

naturally and uniformly about them. This work explores the capacity of Lean to accom-

modate the specification of axiomatic systems and verify that every claim about them is

justified by an appeal to prior definitions and theorems. Henceforth, we will use Exam-

ple 2.3.1, which presents a well-known axiomatization for Classical Logic, to illustrate the

task of specifying a Hilbert calculus and proving some properties about it. In Section 4,

we will apply the same strategies to specify the proposed calculi for the main fragments

of Classical Logic.

As we know from Section 2, the definition of a Hilbert calculus demands a language,

which is specified by means of a signature made of symbols — the connectives of the

language — with an associated arity, and a set of rules of inference. Therefore, before

proving anything about a calculus, we need to give its specification in Lean in terms of

its connectives and inference rules.

In Lean, propositions — the elements of a language — are treated as objects of the

built-in type Prop. So, for example, the expression a → (b ∨ c) in Lean denotes an object of

type Prop. We can use the command #check to verify the type of an object, so #check(a →

(b ∨ c)), given the appropriate declarations of the variables, outputs a → b ∨ c : Prop. Since

connectives in a language are operations that transform formulas into a new formula,

in Lean they are implemented as functions over the type Prop. We will use the keyword

constant to introduce new function symbols in the working environment and, in order to

declare a function that takes an argument of type A and transforms it into an object of

type B, we use the construction A → B. So, the way we declare the connectives for our

example is given below.

−− conjunction
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constant and : Prop → Prop → Prop

−− disjunction

constant or : Prop → Prop → Prop

−− implication

constant imp : Prop → Prop → Prop

−− negation

constant neg : Prop → Prop

−− top

constant top : Prop

−− bottom

constant bot : Prop

In addition, we can let the expressions with binary connectives be given in infix

notation by using the notation construct:

notation a ‘or‘ b := or a b

notation a ‘imp‘ b := imp a b

notation a ‘and‘ b := and a b

Now that we have the language for our calculus, we need to specify its rules. Rules

are also seen as functions in Lean, but this time defined in terms of dependent types,

so that we can apply them to any formulas that obey the rule format (remember that

a rule is presented schematically, but is actually an infinite set of tuples determined by

substitutions over its schema). Such types are called Pi types, whose detailed exposition

is not of interest to us here, and they have a very convenient notation in Lean, using the

symbol ∀. Because we want to give names to the rules so that we can use them in proofs,

we have to define new symbols in the environment, what is possible via the constant

construct, as we did for defining the connectives. Lean, however, offers the keyword axiom

with the same purpose, and thus we can make our specification closer to the typical

mathematical jargon.

Below we have the specification of the rules (and axioms) for our example. Notice that

the implementation of cl1 (the rule of modus ponens) is a function that accepts an object

of type a and another object of type a imp b and gives an object of type b. A common

interpretation for such objects is to consider them as proofs of the formulas corresponding

to their types.

axiom cl1 : ∀ {a b : Prop}, a → a imp b → b

axiom cl2 : ∀ {a b : Prop}, a imp (b imp a)

axiom cl3 : ∀ {a b c : Prop}, (a imp (b imp c)) imp ((a imp b) imp (a imp c))

axiom cl4 : ∀ {a b : Prop}, (a and b) imp a
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axiom cl5 : ∀ {a b : Prop}, (a and b) imp b

axiom cl6 : ∀ {a b : Prop}, a imp (b imp (a and b))

axiom cl7 : ∀ {a b : Prop}, a imp (a or b)

axiom cl8 : ∀ {a b : Prop}, b imp (a or b)

axiom cl9 : ∀ {a b c : Prop}, (a imp c) imp ((b imp c) imp ((a or b) imp c))

axiom cl10 : ∀ {a b : Prop}, (a imp b) imp ((a imp (neg b)) imp (neg a))

axiom cl11 : ∀ {a : Prop}, (neg (neg a)) imp a

axiom cl12 : top

axiom cl13 : ∀ {a : Prop}, bot imp a

At this point, we have our system fully specified in Lean. We are now ready to prove

properties about it. For example, we want to show that A → A, for each formula A,

is a theorem in the system under discussion. For that, we have to present a sequence

of formulas (a derivation) ending with A → A, where each of its elements is either an

instance of an axiom or results from an application of a non-nullary rule of the calculus

to earlier formulas in the sequence. At each step in this derivation, we commonly want to

justify what rule (or axiom) and what formulas (if any) were used.

In Lean, when we want to prove a property like this without the need to name it, we

can use the keyword example to establish the property, and each step in the derivation

uses the keyword have followed by the formula we want to derive, and the keyword from

to indicate the rule (or axiom) and the formulas (if any) we used to derive it. This last

construct is actually the application of a rule to some formulas, in the functional sense.

That said, see below the derivation of a imp a in Lean:

example {a : Prop} : a imp a :=

have h1 : (a imp ((a imp a) imp a)) imp ((a imp (a imp a)) imp (a imp a)), from cl3,

have h2 : a imp ((a imp a) imp a), from cl2,

have h3 : ((a imp (a imp a)) imp (a imp a)), from cl1 h2 h1,

have h4 : a imp (a imp a), from cl2,

show a imp a, from cl1 h4 h3

Notice that we can easily translate this code to the typical form of a derivation tree:

A → (A → A)
cl2

(A → ((A → A) → A)) → ((A → (A → A)) → (A → A))
cl3

A → ((A → A) → A)
cl2

(A → (A → A)) → (A → A)
cl1

A → A
cl1

Moreover, in this work, we will be often required to prove the derivability of non-

nullary rules in a calculus, and, in addition, to use these rules in other derivations, requir-
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ing thus name for them. The way we do this in Lean is very similar to the above example,

but, instead of using the example construct, we use theorem. Since we want a non-nullary

rule, we will also declare parameters for the property, so that we can use them in the

derivation. Just to give an example, suppose that our task is to show the derivability of

the following rule in our calculus for Classical Logic:

A→ B B→ C
A→ C

cl14

Then we can see the Lean code for it as a function taking as arguments a proof of a imp b

and a proof of b imp c, and producing a proof of a imp c by means of a derivation in the

sense of the previous example. Section 4 is full of derivations like this, since we need to

show the derivability of rules that are important for proving the completeness of most of

the calculi we are going to deal with. Below we present the proof of the derivability of cl14

in Lean code, which can also be easily translated into a derivation tree, sketched in the

sequel.

theorem cl14 {a b c : Prop} (h1 : a imp b) (h2 : b imp c) : a imp c :=

have h3 : (a imp (b imp c)) imp ((a imp b) imp (a imp c)), from cl3,

have h4 : (b imp c) imp (a imp (b imp c)), from cl2,

have h5 : a imp (b imp c), from cl1 h2 h4,

have h6 : (a imp b) imp (a imp c), from cl1 h5 h3,

show a imp c, from cl1 h1 h6

(B → C) → (A → (B → C))
cl2

B → C

A → (B → C)
cl1

(A → (B → C)) → ((A → B) → (A → C))
cl3

(A → B) → (A → C)
cl1

A → B

A → C
cl1

We finish this exposition with the representation in Lean of sequent-style rules. Such

kind of rules can be useful when we need meta-properties in a proof of derivability, that

is, when we reason in terms of properties regarding the associated consequence relation.

Section 4.7 is full of examples of derivability proofs using the rules given in Example 2.2.4

together with weaker versions of property δ∨ (see Lemma 4.7.3). The implementation in

Lean of such rules uses again functions on dependent types, but now taking as arguments

functions representing each sequent in the following way: if A1, . . . ,An � B is a sequent,

then we let the functional type a1 → ... → an → b be the type of the objects representing

that sequent. To illustrate this, the Lean code for the aforementioned rules is:
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−− rules holding in every consequence relation

axiom R : ∀ {a : Prop}, a → a

axiom M1 : ∀ {a b c : Prop}, (a → b) → (c → a → b)

axiom T1 : ∀ {a b c : Prop}, (a → b) → (b → c) → (a → c)

axiom T2 : ∀ {a b c d : Prop}, (d → a → b) → (d → b → c) → (d → a → c)

−− weaker versions of δ_or

axiom δ_or1 : ∀ {a b c : Prop}, (a → c) → (b → c) → ((a or b) → c)

axiom δ_or2 : ∀ {a b c d : Prop}, (d → a → c) → (d → b → c) → (d → (a or b) → c)
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4 The fragments and the calculi

This chapter is devoted to the detailed presentation of a Hilbert calculus for each of the

main fragments of Classical Logic. Figure 2 shows a version of Post’s lattice highlighting

only the fragments of interest for this work — those in the finite portion of the structure

— and exhibiting some groups (determined by the black lines) in which such fragments

are organized. We intend here to cover the lattice in the ascending order of the numbers

corresponding to each group. Each group is covered bottom-up, with its members being

developed in one or more sections of this chapter. A fragment together with its expansions

by constants are often grouped in the same section, since, in general, their calculi differ

by minor changes.

1

4

6

2

5 3

7

8

9

10

Figure 2: Main fragments of Classical Logic in Post’s lattice.
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4.1 B∅, B>, B⊥, B⊥,>

The peculiar fragment of Classical Logic induced by the logical matrix 2∅ is axiom-

atized by the equally peculiar Hilbert calculus B∅ whose set of rules is empty. In order

to understand why no rules are necessary in this case, first notice that, in the absence of

connectives, every formula of L∅ is a propositional variable, that is, where P is the set of

propositional variables, L∅ = P . Hence, the set of 2∅-valuations is the set of all functions

from P into {0, 1}. Because of that, whenever Γ ∪ {p} ⊆ L∅ and Γ `2∅ p, the variable p

must be in Γ, for otherwise we could take any valuation that assigns the value 1 to every

variable in Γ and 0 to p. Since p ∈ Γ, properties (R) and (M) imply that Γ `B∅ p, the

desired completeness result. Notice that any calculus over L∅ would be adequate in this

case, but the least one that is sound (clearly by vacuity) with respect to 2∅ is B∅.

We proceed now to the fragments B>, B⊥ and B⊥,>, whose axiomatizations are as

simple as their languages. The calculus B>, presented below, will be used throughout

the present chapter (and at the end of the present section!) in mergings that axiomatize

expansions of other fragments of Classical Logic by the constant >, in view of Corol-

lary 2.8.4.1.

Hilbert Calculus 2. B>

> t1

Theorem 4.1.1. The calculus B> is sound with respect to the matrix 2>.

Proof. There is only one rule and its conclusion is evaluated to 1 for any 2>-valuation,

what guarantees the soundness of the calculus under discussion.

Theorem 4.1.2. The calculus B> is complete with respect to the matrix 2>.

Proof. Consider the procedure described in Section 2.7, let Γ ∪ {Z} ⊆ L>, such that

Γ 6`B> Z and take a Z-maximal theory Γ+ ⊇ Γ. Since > is the sole connective in this

language, and v(>) = 1 for any 2>-valuation, proving completeness in this case is a matter

of showing that

> ∈ Γ+, (>)

by an specialization of property (#). Notice that Γ+ `B> >, by t1 and (M). Then, by

using Corollary 2.6.1.1, we have > ∈ Γ+.



42

Hilbert Calculus 3. B⊥

⊥
A

b1

Theorem 4.1.3. The calculus B⊥ is sound with respect to the matrix 2⊥.

Proof. There is only one rule and its sole premiss is evaluated to 0 for any 2⊥-valuation;

therefore the calculus is sound with respect to 2⊥.

Theorem 4.1.4. The calculus B⊥ is complete with respect to the matrix 2⊥.

Proof. Considering the procedure described in Section 2.7, let Γ ∪ {Z} ⊆ L⊥, such that

Γ 6`B⊥ Z and take a Z-maximal theory Γ+ ⊇ Γ. Since ⊥ is the sole connective in this

language, proving completeness amounts to showing the following specialization of Prop-

erty 2.1:

⊥ 6∈ Γ+. (⊥)

The proof goes by contradiction: assume that ⊥ ∈ Γ+. Then, by Corollary 2.6.1.1, Γ+ `B⊥

⊥. The instance 〈⊥,Z〉 of rule b1, alongside with (M), implies that Γ+,⊥ `B⊥ Z. Property

(T) applied to the mentioned assertions gives Γ+ `B⊥ Z, contradicting the fact that

Γ+ 6`B⊥ Z.

Remark 4.1.1. Notice that the presence of the rule b1 in a calculus having ⊥ in its language

is enough to guarantee the completeness property (⊥).

The expansion B>,⊥ is axiomatized by the calculus below, given the preservation

results for >-expansions presented in Corollary 2.8.4.1:

Hilbert Calculus 4. B⊥,>

B⊥ B>

4.2 B∧,B∧,>,B∧,⊥,B∧,⊥,>

The calculus for B∧ proposed below reflects the behaviour of ∧2 and, as we will see,

its rules are all we need to prove the completeness property (∧), obtained by specializing
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property (#) for the case of ∧.

Hilbert Calculus 5. B∧

A B
A ∧ B

c1 A ∧ B
A

c2 A ∧ B
B

c3

Theorem 4.2.1. The calculus B∧ is sound with respect to the matrix 2∧.

Proof. Let A,B ∈ L∧. Suppose that 〈A,B,A ∧ B〉 ∈ c1. Let v be a 2∧-evaluation, such

that v(A) = 1 and v(B) = 1. By the truth-table of ∧ in 2∧, v(A ∧ B) = 1. For rule c2,

suppose that 〈A ∧ B,A〉 ∈ c2 and that v(A ∧ B) = 1. Then the truth-table of ∧ in 2∧
imposes that v(A) = 1. The proof for rule c3 is analogous.

Theorem 4.2.2. The calculus B∧ is complete with respect to the matrix 2∧.

Proof. Consider the procedure presented in Section 2.7 and take Γ+ ⊇ Γ as a Z-maximal

set, where Γ∪{Z} ⊆ L∧ and Γ 6`B∧ ϕ. By specializing property (#) for the case of ∧, the
completeness property to be proved is given by

A ∧ B ∈ Γ+ iff A ∈ Γ+ and B ∈ Γ+, (∧)

for every A,B ∈ L∧. From left-to-right, suppose that A∧B ∈ Γ+. Since Γ+ is deductively

closed, Γ+ `H∧ A∧B. By rule c2 and (M), Γ+,A∧B `H∧ A. Then, by (T), Γ+ `H∧ A, so

A ∈ Γ+. The proof that B ∈ Γ+ is analogous using rule c3. From right-to-left, suppose that

A ∈ Γ+ and B ∈ Γ+, thus Γ+ `B∧ A and Γ+ `B∧ B. By rule c1 and (M), Γ+,A,B `B∧

A ∧ B, and hence, by (T), Γ+ `B∧ A ∧ B, then A ∧ B ∈ Γ+.

Remark 4.2.1. Notice that the relative maximality of Γ+ was never invoked in this proof.

In fact, any deductively closed set would suffice. Moreover, only the rules of B∧ were

needed in the completeness proof, meaning that adding new rules to this calculus would

not disprove the completeness property (∧).

The expansion B∧,> is axiomatized effortlessly by the calculus below, given Corol-

lary 2.8.4.1.

Hilbert Calculus 6. B∧,>
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B∧ B>

The expansion B∧,⊥ turns out to be easily axiomatized by the calculus below (an

uncommon case, since expansions by the constant ⊥ often need mixing rules):

Hilbert Calculus 7. B∧,⊥

B∧ B⊥

Since the completeness property (∧) still holds in this calculus (see Remark 4.2.1), the

completeness result of this expansion trivially follows because the rule b1 implies the

property (⊥).

Finally, using Corollary 2.8.4.1 again, the expansion B∧,⊥,> is axiomatized by the

following calculus.

Hilbert Calculus 8. B∧,⊥,>

B∧,⊥ B>

4.3 Bka, Bka,⊥

The classical connective ka may be defined from those in B via the translation t(ka) =

λp, q, r.p ∧ (q ∨ r) and gives rise to a more complex fragment than those of the previous

sections with respect to the corresponding Hilbert calculus. The rules of Bka are presented

below, followed by the soundness result with respect to 2ka.

Hilbert Calculus 9. Bka

A B
ka(A,B,C)

ka1
ka(A,B,B)

B
ka2

ka(A,B,C)

ka(A,C,B)
ka3

ka(A,B, ka(A,C,D))

ka(A, ka(A,B,C),D)
ka4
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ka(A,B,C) ka(A,B, ka(A,D,E))

ka(A,B, ka(C,D,E))
ka5

ka(A,C, ka(B,D,E))

ka(A,C,B)
ka6

ka(A,C, ka(B,D,E))

ka(A,C, ka(A,D,E))
ka7

Theorem 4.3.1. The calculus Bka is sound with respect to the matrix 2ka.

Proof. Let v be a 2ka-valuation, and, to simplify notation, denote also by v the 2-valuation

v′ such that v = t ◦ v′. The rule ka1 is sound because, if v(A) = 1 and v(B) = 1,

then v(B ∨ C) = 1 and thus v(ka(A,B,C)) = 1. For ka2, if v(ka(A,B,B)) = 1, then

v(B ∨ B) = 1, and v(B) = 1. For ka3, if v assigns 1 to its premiss, then v(A) = 1 and

v(B ∨ C) = 1, and, because the interpretation of ∨ is commutative (see rule d3 of the

axiomatization for B∨ in Section 4.5), v(C∨B) = 1, and v(ka(A,C,B)) = 1. For rule ka4,

if v(ka(A,B, ka(A,C,D))) = 1, then v(A) = 1 and either v(B) = 1 or v(ka(A,C,D)) = 1.

In the first case, v(ka(A,B,C)) = 1, since v(A) = 1 too, what verifies the conclusion. In

the second, either v(C) = 1 or v(D) = 1, both of which cause the conclusion to be also

verified. For rule ka5, suppose that v(ka(A,B,C)) = 1 and v(ka(A,B, ka(A,D,E))) = 1.

Then v(A) = 1 and either v(B) = 1 or v(C) = 1 and v(ka(A,D,E)) = 1. In case B = 1,

the conclusion holds because A = 1. Otherwise, C = 1 and either D = 1 or E = 1. In

both those cases, the conclusion holds. For rule ka6, if v(ka(A,C, ka(B,D,E))) = 1, then

v(A) = 1 and either v(C) = 1 or v(ka(B,D,E)) = 1. In the first case, the conclusion

clearly holds. The second case implies that v(B) = 1, causing the conclusion to be also

verified. For rule ka7, if v(ka(A,C, ka(B,D,E))) = 1, then v(A) = 1 and either v(C) = 1

or v(ka(B,D,E)) = 1. The first case causes the conclusion to be verified. The second

one implies that either v(D) = 1 or v(E) = 1. Both cases lead to the verification of the

conclusion.

In what follows, if r is an n-ary rule, with n ∈ ω, let rka, the ka-lifted version of r, be

the rule given by the set of instances 〈ka(C,D,A1), . . . , ka(C,D,An), ka(C,D,B)〉, where
〈A1, . . . ,An,B〉 is an instance of r and C,D ∈ Lka. The main purpose of the next lemma

is to show that all ka-lifted versions of the primitive rules of ka are derivable in Bka, an

important step towards the completeness of this calculus with respect to 2ka.

Lemma 4.3.2. The following rules are derivable in Bka:

ka(A,B,C)

A
ka0

ka(A, ka(A,B,C),D)

ka(A,B, ka(A,C,D))
ka′4
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ka(A,B, ka(A,C,C))

ka(A,B,C)
ka8

ka(E,D,A) ka(E,D,B)

ka(E,D, ka(A,B,C))
kaka1

ka(D,C, ka(A,B,B))

ka(D,C,B)
kaka2

ka(E,D, ka(A,B,C))

ka(E,D, ka(A,C,B))
kaka3

ka(F,E, ka(A,B, ka(A,C,D)))

ka(F,E, ka(A, ka(A,B,C),D))
kaka4

ka(G,F, ka(A,B,C)) ka(G,F, ka(A,B, ka(A,D,E)))

ka(G,F, ka(A,B, ka(C,D,E)))
kaka5

ka(G,F, ka(A,C, ka(B,D,E)))

ka(G,F, ka(A,C,B))
kaka6

ka(G,F, ka(A,C, ka(B,D,E)))

ka(G,F, ka(A,C, ka(A,D,E)))
kaka7

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• ka0

theorem ka0 {a b c : Prop} (h1 : ka a b c) : a :=

have h3 : ka (ka a b c) (ka a b c) a, from ka1 h1 h1,

have h4 : ka (ka a b c) a (ka a b c), from ka3 h3,

have h5 : ka (ka a b c) a a, from ka6 h4,

show a, from ka2 h5

• ka′4

theorem ka4’ {a b c d : Prop} (h1 : ka d (ka d c a) b) : ka d c (ka d a b) :=

have h2 : ka d b (ka d c a), from ka3 h1,

have h3 : ka d (ka d b c) a, from ka4 h2,

have h4 : ka d a (ka d b c), from ka3 h3,

have h5 : ka d (ka d a b) c, from ka4 h4,

show ka d c (ka d a b), from ka3 h5

• ka8
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theorem ka8 {a b c : Prop} (h1 : ka a b (ka a c c)) : ka a b c :=

have h2 : ka a (ka a b c) c, from ka4 h1,

have h3 : ka a c (ka a b c), from ka3 h2,

have h4 : a, from ka0 h2,

have h5 : ka a (ka a c (ka a b c)) b, from ka1 h4 h3,

have h6 : ka a b (ka a c (ka a b c)), from ka3 h5,

have h7 : ka a (ka a b c) (ka a b c), from ka4 h6,

show ka a b c, from ka2 h7

• kaka1

theorem ka1_ka {a b c d e : Prop} (h1 : ka e d a) (h2 : ka e d b) : ka e d (ka a b c) :=

have h3 : e, from ka0 h2,

have h4 : ka e (ka e d b) c, from ka1 h3 h2,

have h5 : ka e d (ka e b c), from ka4’ h4,

show ka e d (ka a b c), from ka5 h1 h5

• kaka2

theorem ka2_ka {a b c d : Prop} (h1 : ka d c (ka a b b)) : ka d c b :=

have h2 : ka d c (ka d b b), from ka7 h1,

show ka d c b, from ka8 h2

• kaka3

theorem ka3_ka {a b c d e : Prop} (h1 : ka e d (ka a b c)) : ka e d (ka a c b) :=

have h2 : e, from ka0 h1,

have h3 : ka e d a, from ka6 h1,

have h4 : ka e d (ka e b c), from ka7 h1,

have h5 : ka e (ka e d b) c, from ka4 h4,

have h6 : ka e (ka e (ka e d b) c) b, from ka1 h2 h5,

have h7 : ka e (ka e d b) (ka e c b), from ka4’ h6,

have h8 : ka e d (ka e b (ka e c b)), from ka4’ h7,

have h9 : ka e (ka e b (ka e c b)) d, from ka3 h8,

have h10 : ka e b (ka e (ka e c b) d), from ka4’ h9,

have h11 : ka e (ka e b (ka e (ka e c b) d)) c, from ka1 h2 h10,

have h12 : ka e c (ka e b (ka e (ka e c b) d)), from ka3 h11,

have h13 : ka e (ka e c b) (ka e (ka e c b) d), from ka4 h12,

have h14 : ka e (ka e (ka e c b) (ka e c b)) d, from ka4 h13,

have h15 : ka e d (ka e (ka e c b) (ka e c b)), from ka3 h14,
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have h16 : ka e d (ka e c b), from ka2_ka h15,

show ka e d (ka a c b), from ka5 h3 h16

• kaka4

theorem ka4_ka {a b c d e f : Prop} (h1 : ka f e (ka a b (ka a c d))) :

ka f e (ka a (ka a b c) d):=

have h2 : ka f e (ka f b (ka a c d)), from ka7 h1,

have h3 : ka f (ka f e b) (ka a c d), from ka4 h2,

have h4 : ka f (ka f e b) (ka f c d), from ka7 h3,

have h5 : ka f (ka f e b) (ka f d c), from ka3_ka h4,

have h6 : ka f (ka f (ka f e b) d) c, from ka4 h5,

have h7 : f, from ka0 h1,

have h8 : ka f (ka f (ka f (ka f e b) d) c) b, from ka1 h7 h6,

have h9 : ka f (ka f (ka f e b) d) (ka f c b), from ka4’ h8,

have h10 : ka f (ka f (ka f e b) d) (ka f b c), from ka3_ka h9,

have h11 : ka f (ka f e b) (ka f d (ka f b c)), from ka4’ h10,

have h12 : ka f (ka f e b) (ka f (ka f b c) d), from ka3_ka h11,

let g := ka f (ka f b c) d in

have h13 : ka f (ka f e b) g, from h12,

have h14 : ka f e (ka f b g), from ka4’ h13,

have h15 : ka f e (ka f g b), from ka3_ka h14,

have h16 : ka f (ka f e g) b, from ka4 h15,

have h17 : ka f (ka f (ka f e g) b) c, from ka1 h7 h16,

have h18 : ka f (ka f e g) (ka f b c), from ka4’ h17,

have h19 : ka f (ka f (ka f e g) (ka f b c)) d, from ka1 h7 h18,

have h20 : ka f (ka f e g) (ka f (ka f b c) d), from ka4’ h19,

have h21 : ka f (ka f e g) g, from h20,

have h22 : ka f e (ka f g g), from ka4’ h21,

have h23 : ka f e g, from ka2_ka h22,

have h24 : ka f e (ka f (ka f b c) d), from h23,

have h25 : ka f e a, from ka6 h1,

have h26 : ka f (ka f e a) d, from ka1 h7 h25,

have h27 : ka f e (ka f a d), from ka4’ h26,

have h28 : ka f e (ka f d a), from ka3_ka h27,

have h29 : ka f (ka f e d) a, from ka4 h28,

have h30 : ka f e (ka f d (ka f b c)), from ka3_ka h24,

have h31 : ka f (ka f e d) (ka f b c), from ka4 h30,

have h32 : ka f (ka f e d) (ka a b c), from ka5 h29 h31,

have h33 : ka f e (ka f d (ka a b c)), from ka4’ h32,

have h34 : ka f e (ka a d (ka a b c)), from ka5 h25 h33,

show ka f e (ka a (ka a b c) d), from ka3_ka h34
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• kaka5

theorem ka5_ka {a b c d e f g : Prop}

(h1 : ka g f (ka a b c))

(h2 : ka g f (ka a b (ka a d e))) :

ka g f (ka a b (ka c d e)) :=

have h3 : ka g f (ka g b c), from ka7 h1,

have h4 : ka g (ka g f b) c, from ka4 h3,

have h5 : ka g f (ka g b (ka a d e)), from ka7 h2,

have h6 : ka g (ka g f b) (ka a d e), from ka4 h5,

have h7 : ka g (ka g f b) (ka g d e), from ka7 h6,

have h8 : ka g (ka g f b) (ka c d e), from ka5 h4 h7,

have h9 : ka g f (ka g b (ka c d e)), from ka4’ h8,

have h10 : ka g f a, from ka6 h1,

show ka g f (ka a b (ka c d e)), from ka5 h10 h9

• kaka6

theorem ka6_ka {a b c d e f g : Prop} (h1 : ka g f (ka a c (ka b d e))) :

ka g f (ka a c b) :=

have h2 : ka g f (ka g c (ka b d e)), from ka7 h1,

have h3 : ka g (ka g f c) (ka b d e), from ka4 h2,

have h4 : ka g (ka g f c) b, from ka6 h3,

have h5 : ka g f (ka g c b), from ka4’ h4,

have h6 : ka g f a, from ka6 h1,

show ka g f (ka a c b), from ka5 h6 h5

• kaka7

theorem ka7_ka {a b c d e f g : Prop} (h1 : ka g f (ka a c (ka b d e))) :

ka g f (ka a c (ka a d e)) :=

have h2 : ka g f a, from ka6 h1,

have h3 : g, from ka0 h1,

have h4 : ka g (ka g f a) c, from ka1 h3 h2,

have h5 : ka g f (ka g a c), from ka4’ h4,

have h6 : ka g f (ka g c a), from ka3_ka h5,

have h7 : ka g (ka g f c) a, from ka4 h6,

have h8 : ka g f (ka g c (ka b d e)), from ka7 h1,

have h9 : ka g (ka g f c) (ka b d e), from ka4 h8,

have h10 : ka g (ka g f c) (ka g d e), from ka7 h9,
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have h11 : ka g (ka g f c) (ka a d e), from ka5 h7 h10,

have h12 : ka g f (ka g c (ka a d e)), from ka4’ h11,

show ka g f (ka a c (ka a d e)), from ka5 h2 h12

Next, we present the monotonicity property mka and the deduction theorem δka, and

prove that they hold in Bka, culminating in the completeness of this calculus.

Lemma 4.3.3. The following property holds for `Bka
:

for all Γ ∪ {A,B,C,D} ⊆ Lka. if Γ,A `Bka
B then Γ, ka(C,D,A) `Bka

ka(C,D,B) (mka)

Proof. Let Γ ∪ {A,B,C,D} ⊆ Lka. Suppose that Γ,A `Bka
B and that this is witnessed

by the derivation P1, . . . ,Pn, where Pn = B, for some n ∈ ω. We will prove by induction

on this derivation that Γ, ka(C,D,A) `Bka
ka(C,D,Pj), for all 1 ≤ j ≤ n. In the base

case, where j = 1, P1 is either equal to A or is in Γ, since no axioms are available in

the system. In the first case, using that P1 = A, together with (R) and (M), we get

Γ, ka(C,D,A) `Bka
ka(C,D,P1). In the second case, if P1 ∈ Γ, then, by taking the context

Γ′ := Γ ∪ {ka(C,D,A)}, the following proves ka(C,D,P1):

(1) P1 P1 ∈ Γ′

(2) ka(C,D,A) ka(C,D,A) ∈ Γ′

(3) C 2 ka0

(4) ka(C,P1,D) 3, 1 ka1

(5) ka(C,D,P1) 4 ka3

For the inductive step, suppose that Γ, ka(C,D,A) `Bka
ka(C,D,Pk), for all k < j, with

j > 1. Then, Pj is either A, is in Γ or results from the application of the instance

〈Pk1 , . . . ,Pkm ,Pj〉 of one of the m-ary primitive rules, say kas for 1 ≤ s ≤ 7, to the pre-

misses Pk1 , . . . ,Pkm , where kl < j, for all 1 ≤ l ≤ m. The first two cases goes like in the

base case. For the third case, it is true that ka(C,D,Pk1), . . . , ka(C,D,Pkm) are provable

from Γ, ka(C,D,A) by the inductive hypothesis. Then, by applying the corresponding rule

kakas , proved to be derivable in Lemma 4.3.2, using those formulas as premisses, we derive

ka(C,D,Pj), as desired. The proof of the present lemma is precisely the case j = n.
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Lemma 4.3.4. The following property holds for `Bka
:

for all Γ ∪ {A,B,C,D} ⊆ Lka. if Γ,A `Bka
C and Γ,B `Bka

C then Γ, ka(D,A,B) `Bka
C

(δka)

Proof. Let Γ ∪ {A,B,C,D} ⊆ Lka and suppose that Γ,A `Bka
C and Γ,B `Bka

C. Then,

the following reasoning proves the present lemma:

(1) Γ,A `Bka
C Assumption

(2) Γ,B `Bka
C Assumption

(3) Γ, ka(D,C,A) `Bka
ka(D,C,C) 1 mka

(4) ka(D,C,C) `Bka
C ka2

(5) Γ, ka(D,C,A), ka(D,C,C) `Bka
C 4 (M)

(6) Γ, ka(D,C,A) `Bka
C 3, 5 (T)

(7) Γ, ka(D,A,B) `Bka
ka(D,A,C) 2 mka

(8) ka(D,A,C) `Bka
ka(D,C,A) ka3

(9) Γ, ka(D,A,B), ka(D,A,C) `Bka
ka(D,C,A) 8 (M)

(10) Γ, ka(D,A,B) `Bka
ka(D,C,A) 7, 9 (T)

(11) Γ, ka(D,A,B), ka(D,C,A) `Bka
C 6 (M)

(12) Γ, ka(D,A,B) `Bka
C 10, 11 (T)

Theorem 4.3.5. The calculus Bka is complete with respect to the matrix 2ka.

Proof. Following the procedure presented in Section 2.7, let Γ ∪ {Z} ⊆ Lka and take the

Z-maximal theory Γ+ ⊇ Γ via the Lindenbaum-Asser Lemma. From the interpretation of

ka in 2ka and property (#), the completeness property (ka) is given by:

ka(A,B,C) ∈ Γ+ iff A ∈ Γ+ and (B ∈ Γ+ or C ∈ Γ+) (ka)

From the right to the left, suppose that A ∈ Γ+ and B ∈ Γ+, thus Γ+ `Bka
A and

Γ+ `Bka
B. The instance of ka1 given by 〈A,B, ka(A,B,C)〉 alongside with (M) guarantee

that Γ+,A,B `Bka
ka(A,B,C). Using the latter with the previous consecutions, by an

appeal to (T), produces Γ+ `Bka
ka(A,B,C), thus ka(A,B,C) ∈ Γ+. The proof in the case

A ∈ Γ+ and C ∈ Γ+ is analogous.

From the left to the right, suppose that (a): ka(A,B,C) ∈ Γ+. Then, Γ+ `Bka

ka(A,B,C). By rule ka0 and (M), Γ+, ka(A,B,C) `Bka
A, which, together with the pre-
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vious consecution, yields Γ+ `Bka
A by (T). Now, we have to show that B ∈ Γ+ or

C ∈ Γ+. Let us work by contradiction: assume that B,C 6∈ Γ+, then, by Corollary 2.6.1.1,

Γ+,B `Bka
Z and Γ+,C `Bka

Z. Hence, by δka (see Lemma 4.3.4), Γ+, ka(A,B,C) `Bka
Z,

yielding, together with (a), Γ+ `Bka
Z by (T), an absurd.

Remark 4.3.1. Notice that if a new rule r is added to Bka, then deriving its ka-lifted

version, namely rka, causes the completeness property (ka) to be preserved in the expanded

calculus.

The calculus for the expansion Bka,⊥ comes from the calculus for Bka by adding a new

rule of interaction, as presented below:

Hilbert Calculus 10. Bka,⊥

Bka

ka(A,B,⊥)

ka(A,B,C)
kab1

Theorem 4.3.6. The calculus Bka,⊥ is sound with respect to the matrix 2ka,⊥.

Proof. Remember that we already proved the soundness of Bka (see Theorem 4.3.1), so it

remains to show that the new rule is sound. For that, let v be an arbitrary 2ka,⊥-valuation

and suppose that v(ka(A,B,⊥)) = 1, thus, from the truth-table of ka, v(A) = 1 and either

v(B) = 1 or v(⊥) = 1. Since this second case is impossible, we necessarily have v(B) = 1,

and the targeted conclusion follows.

The following lemma deals with the derivability of the rules necessary for preserving

the completeness properties of both connectives of Bka,⊥.

Lemma 4.3.7. The following rules are derivable in Bka,⊥:

ka(D,E, ka(A,B,⊥))

ka(D,E, ka(A,B,C))
kabka

1

⊥
A

b1

Proof. The formally verified derivation of each rule is presented below:

• kabka
1
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theorem kab1_ka {a b c d e : Prop} (h1 : ka d e (ka a b bot)) : ka d e (ka a b c) :=

have h2 : ka d e (ka d b bot), from ka.ka7 h1,

have h3 : ka d (ka d e b) bot, from ka.ka4 h2,

have h4 : ka d (ka d e b) c, from kab1 h3,

have h5 : ka d e a, from ka.ka6 h1,

have h6 : ka d e (ka d b c), from ka.ka4’ h4,

show ka d e (ka a b c), from ka.ka5 h5 h6

• b1

theorem b1 {a : Prop} (h1 : bot) : a :=

have h2 : ka bot bot bot, from ka.ka1 h1 h1,

have h3 : ka bot bot a, from kab1 h2,

have h4 : ka bot a bot, from ka.ka3 h3,

have h5 : ka bot a a, from kab1 h4,

show a, from ka.ka2 h5

Theorem 4.3.8. The calculus Bka,⊥ is complete with respect to the matrix 2ka,⊥.

Proof. According to what was pointed out in Remark 4.1.1 and Remark 4.3.1, the deriv-

ability of b1 and kabka
1 imply the completeness properties (⊥) and (ka), respectively.

4.4 Bki, Bki,⊥

The classical connective ki may be defined from those in B by means of the translation

t(ki) = λp, q, r.p ∧ (q → r). The proposed calculus for the fragment Bki, with nine rules

and no axioms, is presented below, followed immediately by the soundness proof.

Hilbert Calculus 11. Bki

B ki(A,B,C)

C
ki1

A
ki(A,B, ki(A,C,B))

ki2



54

ki(B,F,A)

ki(B,F, ki(A, ki(A,C, ki(A,D,E)), ki(A, ki(A,C,D), ki(A,C,E))))
ki3

ki(B,E,A)

ki(B,E, ki(A, ki(A, ki(A,C,D),C),C))
ki4

ki(A,B, ki(A,C,D))

ki(A, ki(B,B,C),D)
ki5

ki(A, ki(B,B,C),D)

ki(A,B, ki(A,C,D))
ki6

ki(A,E,B) ki(A,E, ki(A,C,D))

ki(A,E, ki(B,C,D))
ki7

ki(A,E, ki(B,C,D))

ki(A,E,B)
ki8

ki(A,E, ki(B,C,D))

ki(A,E, ki(A,C,D))
ki9

Theorem 4.4.1. The calculus Bki is sound with respect to the matrix 2ki.

Proof. Let v be a 2ki-valuation, and, to simplify notation, denote also by v the 2-valuation

v′ such that v = t◦v′. For ki1, suppose that v(B) = 1 and v(ki(A,B,C)) = 1. Then v(A) =

1 for sure, and v(C) = 1 necessarily, otherwise v(B→ C) = 0, causing v(ki(A,B,C)) = 0,

a contradiction. For ki2, suppose that v(ki(A,B, ki(A,C,B))) = 0. Then we have two

cases, either v(A) = 0 or v(B → ki(A,C,B)) = 0. The latter implies that v(B) = 1 and

v(ki(A,C,B)) = 0. Since v(C→ B) = 1 because v(B) = 1, we have v(A) = 0. For ki3, we

have two cases to consider, under the assignments that make v(ki(B,F,A)) = 1: either

v(F) = 0 or v(F) = 1. In the first case, we have the conclusion being falsified by v, because

F is the antecedent of the outermost implication that constitutes the conclusion. The

remaining case is v(B) = 1, v(F) = 1 and v(A) = 1. Notice that if v(C) = 0, the conclusion

also takes the value 1. Now, if v(C) = 1, taking v(D) = 0 also makes the conclusion to

receive the value 1. If v(D) = 1 and taking v(E) = 0, we have v(ki(A,C, ki(A,D,E))) = 0,

validating the conclusion, and if v(E) = 1 then trivially the conclusion is validated. For

ki4, if the conclusion is evaluated to 0, then either v(B) = 0, falsifying the premiss,

or v(E) = 1 and v(ki(A, ki(A, ki(A,C,D),C),C)) = 0. In this case, either v(A) = 0 or

v(ki(A,C,D) → C) = 1 and v(C) = 0. This last case makes v(ki(A,C,D)) = 0 and

v(C→ D) = 1, so v(A) = 0, falsifying the premiss. For ki5, if the conclusion is evaluated

to 0, then either v(A) = 0, falsifying the premiss, or v(ki(B,B,C)→ D) = 0. In this case,

v(ki(B,B,C)) = 1 and v(D) = 0. Then, we have v(B) = 1 and v(C) = 1, making the
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premiss false, because v(C → D) = 0. For ki6, if the conclusion is evaluated to 0, then

either v(A) = 0 or v(B→ ki(A,C,D)) = 0. In this case, v(B) = 1 and v(ki(A,C,D)) = 0.

But now, assuming v(A) = 1, we have v(C→ D) = 0, so v(C) = 1 and v(D) = 0, causing

v(ki(B,B,C) → D) = 0, falsifying the premiss. For ki7, suppose that the conclusion is

evaluated to 0. Then either v(A) = 0 or v(E → ki(B,C,D)) = 0. In the latter, taking

v(A) = 1, we have v(E) = 1 and v(ki(B,C,D)) = 0, but then v(B) = 1 and v(C→ D) = 0

and the premiss ki(A,E, ki(A,C,D)) is evaluated to 0. For ki8, suppose that the conclusion

is evaluated to 0. Then either v(A) = 0 or v(E → B) = 0. In this case, v(E) = 1 and

v(B) = 0, causing v(ki(B,C,D)) = 0, falsifying the entire premiss. For ki9, if the conclusion

is evaluated to 0, then either v(A) = 0 or v(E→ ki(A,C,D)) = 0. In this case, v(E) = 1

and v(ki(A,C,D)) = 0, thus, since v(A) = 1, v(C→ D) = 0, meaning that the premiss is

falsified no matter the assignment v(B).

In what follows, if r is an n-ary rule, with n ∈ ω, consider rki, the ki-lifted version of

r, the rule given by the set of instances 〈ki(C,D,A1), . . . , ki(C,D,An), ki(C,D,B)〉, where
〈A1, . . . ,An,B〉 is an instance of r and C,D ∈ Lki. The main purpose of the next lemma

is to show that Bki has the ki-lifted versions of its primitive rules as derivable rules, an

important fact for proving completeness with respect to 2ki.

Lemma 4.4.2. The following rules are derivable in Bki:
A C

ki(A,B,C)
ki10

A
ki(A, ki(A,B, ki(A,C,D)), ki(A, ki(A,B,C), ki(A,B,D)))

ki′3

A
ki(A, ki(A, ki(A,C,B),C),C)

ki′4

ki(A,B,C)

A
ki0

A
ki(A,B,B)

ki11

ki(A,B, ki(A,C,D))

ki(A,C, ki(A,B,D))
ki12

ki(A,B, ki(A,B,C))

ki(A,B,C)
ki13

ki(A,B,D)

ki(B,B, ki(A,C,D))
ki14

ki(A,B,D)

ki(C,C, ki(A,B,D))
ki15
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ki(A,B,C) ki(A,C,D)

ki(A,B,D)
ki16

ki(D,E,B) ki(D,E, ki(A,B,C))

ki(D,E,C)
kiki1

ki(D,E,A)

ki(D,E, ki(A,B, ki(A,C,B)))
kiki2

ki(D,E,A) ki(D,E,C)

ki(D,E, ki(A,B,C))
kiki10

ki(E,F, ki(A,B, ki(A,C,D)))

ki(E,F, ki(A,C, ki(A,B,D)))
kiki12

ki(G,H, ki(B,F,A))

ki(G,H, ki(B,F, ki(A, ki(A,C, ki(A,D,E)), ki(A, ki(A,C,D), ki(A,C,E)))))
kiki3

ki(F,G, ki(B,E,A))

ki(F,G, ki(B,E, ki(A, ki(A, ki(A,C,D),C),C)))
kiki4

ki(E,F, ki(A,B, ki(A,C,D)))

ki(E,F, ki(A, ki(B,B,C),D))
kiki5

ki(E,F, ki(A, ki(B,B,C),D))

ki(E,F, ki(A,B, ki(A,C,D)))
kiki6

ki(F,G, ki(A,E,B)) ki(F,G, ki(A,E, ki(A,C,D)))

ki(F,G, ki(A,E, ki(B,C,D)))
kiki7

ki(F,G, ki(A,E, ki(B,C,D)))

ki(F,G, ki(A,E,B))
kiki8

ki(F,G, ki(A,E, ki(B,C,D)))

ki(F,G, ki(A,E, ki(A,C,D)))
kiki9

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• ki10

theorem ki10 {a b c : Prop} (h1 : a) (h2 : c) : ki a b c :=

have h3 : ki a c (ki a b c), from ki2 h1,

show ki a b c, from ki1 h2 h3

• ki′3

theorem ki’3 {a b c d : Prop} (h1 : a) :

ki a (ki a b (ki a c d)) (ki a (ki a b c) (ki a b d)) :=

have h2 : ki a a a, from ki10 h1 h1,

have h3 : ki a a (ki a (ki a b (ki a c d)) (ki a (ki a b c) (ki a b d))), from ki3 h2,
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show ki a (ki a b (ki a c d)) (ki a (ki a b c) (ki a b d)), from ki1 h1 h3

• ki′4

theorem ki’4 {a b c : Prop} (h1 : a) : ki a (ki a (ki a c b) c) c :=

have h2 : ki a a a, from ki10 h1 h1,

have h3 : ki a a (ki a (ki a (ki a c b) c) c), from ki4 h2,

show ki a (ki a (ki a c b) c) c, from ki1 h1 h3

• ki0

theorem ki0 {a b c : Prop} (h1 : ki a b c) : a :=

let r := ki a b c in

have h2 : r, from h1,

have h3 : ki r r (ki a b c), from ki10 h2 h2,

have h4 : ki r r a, from ki8 h3,

show a, from ki1 h2 h4

• ki11

theorem ki11 {a b : Prop} (h1 : a) : ki a b b :=

have h2 : ki a (ki a b (ki a a b)) (ki a (ki a b a) (ki a b b)), from ki’3 h1,

have h3 : ki a b (ki a a b), from ki2 h1,

have h4 : ki a (ki a b a) (ki a b b), from ki1 h3 h2,

have h5 : ki a b a, from ki10 h1 h1,

show ki a b b, from ki1 h5 h4

• ki12

theorem ki12 {a b c d : Prop} (h1 : ki a b (ki a c d)) : ki a c (ki a b d) :=

have h2 : a, from ki0 h1,

have h3 : ki a (ki a b (ki a c d)) (ki a (ki a b c) (ki a b d)), from ki’3 h2,

have h4 : ki a (ki a b c) (ki a b d), from ki1 h1 h3,

have h5 : ki a c (ki a (ki a b c) (ki a b d)), from ki10 h2 h4,

let r := ki a b d, q := ki a b c in

have h6 : ki a (ki a c (ki a q r)) (ki a (ki a c q) (ki a c r)), from ki’3 h2,

have h7 : ki a (ki a c q) (ki a c r), from ki1 h5 h6,

have h8 : ki a c q, from ki2 h2,

have h9 : ki a c r, from ki1 h8 h7,

show ki a c (ki a b d), from h9
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• ki13

theorem ki13 {a b c : Prop} (h1 : ki a b (ki a b c)) : ki a b c :=

have h2 : a, from ki0 h1,

have h3 : ki a (ki a b (ki a b c)) (ki a (ki a b b) (ki a b c)), from ki’3 h2,

have h4 : ki a (ki a b b) (ki a b c), from ki1 h1 h3,

have h5 : ki a b b, from ki11 h2,

show ki a b c, from ki1 h5 h4

• ki14

theorem ki14 {a b c d : Prop} (h1 : ki a b d) : ki a (ki b b c) d :=

have h2 : a, from ki0 h1,

have h3 : ki a c (ki a b d), from ki10 h2 h1,

have h4 : ki a b (ki a c d), from ki12 h3,

show ki a (ki b b c) d, from ki5 h4

• ki15

theorem ki15 {a b c d : Prop} (h1 : ki a b d) : ki a (ki c c b) d :=

have h2 : a, from ki0 h1,

have h3 : ki a c (ki a b d), from ki10 h2 h1,

show ki a (ki c c b) d, from ki5 h3

• ki16

theorem ki16 {a b c d : Prop} (h1 : ki a b c) (h2 : ki a c d) : ki a b d :=

have h3 : a, from ki0 h1,

have h4 : ki a (ki a b (ki a c d)) (ki a (ki a b c) (ki a b d)), from ki’3 h3,

have h5 : ki a b (ki a c d), from ki10 h3 h2,

have h6 : ki a (ki a b c) (ki a b d), from ki1 h5 h4,

show ki a b d, from ki1 h1 h6

• kiki1

theorem ki1_ki {a b c d e : Prop} (h1 : ki d e b) (h2 : ki d e (ki a b c)) : ki d e c :=

have h3 : ki d e (ki d b c), from ki9 h2,

have h4 : ki d b (ki d e c), from ki12 h3,
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have h5 : ki d e (ki d e c), from ki16 h1 h4,

show ki d e c, from ki13 h5

• kiki2

theorem ki2_ki {a b c d e : Prop} (h1 : ki d e a) : ki d e (ki a b (ki a c b)) :=

have h2 : d, from ki0 h1,

have h3 : ki d b (ki d c b), from ki2 h2,

have h4 : ki d (ki e e b) (ki d c b), from ki15 h3,

have h5 : ki d (ki e e b) a, from ki14 h1,

have h6 : ki d (ki e e b) (ki a c b), from ki7 h5 h4,

have h7 : ki d e (ki d b (ki a c b)), from ki6 h6,

show ki d e (ki a b (ki a c b)), from ki7 h1 h7

• kiki10

theorem ki10_ki {a b c d e : Prop} (h1 : ki d e a) (h2 : ki d e c) : ki d e (ki a b c) :=

have h3 : ki d e (ki a c (ki a b c)), from ki2_ki h1,

show ki d e (ki a b c), from ki1_ki h2 h3

• kiki12

theorem ki12_ki {a b c d e f : Prop} (h1 : ki e f (ki a b (ki a c d))) :

ki e f (ki a c (ki a b d)) :=

have h2 : ki e f a, from ki8 h1,

have h3 : ki e f (ki a (ki a b (ki a c d)) (ki a (ki a b c) (ki a b d))), from ki3 h2,

have h4 : ki e f (ki a (ki a b c) (ki a b d)), from ki1_ki h1 h3,

have h5 : ki e f (ki a c (ki a (ki a b c) (ki a b d))), from ki10_ki h2 h4,

let r := ki a b d, q := ki a b c in

have h6 : ki e f (ki a (ki a c (ki a q r)) (ki a (ki a c q) (ki a c r))), from ki3 h2,

have h7 : ki e f (ki a (ki a c q) (ki a c r)), from ki1_ki h5 h6,

have h8 : ki e f (ki a c q), from ki2_ki h2,

have h9 : ki e f (ki a c r), from ki1_ki h8 h7,

show ki e f (ki a c (ki a b d)), from h9

• kiki3

theorem ki3_ki {a b c d e f g h : Prop}

(h1 : ki g h (ki b f a)) :

ki g h (ki b f (ki a (ki a c (ki a d e)) (ki a (ki a c d) (ki a c e)))) :=
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have h2 : ki g h (ki g f a), from ki9 h1,

have h3 : ki g (ki h h f) a, from ki5 h2,

have h4 : ki g (ki h h f) (ki a (ki a c (ki a d e)) (ki a (ki a c d) (ki a c e))), from ki3 h3,

have h5 : ki g h (ki g f (ki a (ki a c (ki a d e)) (ki a (ki a c d) (ki a c e)))), from ki6 h4,

have h6 : ki g h b, from ki8 h1,

show ki g h (ki b f (ki a (ki a c (ki a d e)) (ki a (ki a c d) (ki a c e)))), from ki7 h6 h5

• kiki4

theorem ki4_ki {a b c d e f g : Prop}

(h1 : ki f g (ki b e a)) :

ki f g (ki b e (ki a (ki a (ki a c d) c) c)) :=

have h2 : ki f g (ki f e a), from ki9 h1,

have h3 : ki f (ki g g e) a, from ki5 h2,

have h4 : ki f (ki g g e) (ki a (ki a (ki a c d) c) c), from ki4 h3,

have h5 : ki f g (ki f e (ki a (ki a (ki a c d) c) c)), from ki6 h4,

have h6 : ki f g b, from ki8 h1,

show ki f g (ki b e (ki a (ki a (ki a c d) c) c)), from ki7 h6 h5

• kiki5

theorem ki5_ki {a b c d e f : Prop} (h1 : ki e f (ki a b (ki a c d))) :

ki e f (ki a (ki b b c) d) :=

have h2 : ki e f (ki e b (ki a c d)), from ki9 h1,

have h3 : ki e b (ki e f (ki a c d)), from ki12 h2,

have h4 : ki e (ki b b f) (ki a c d), from ki5 h3,

have h5 : ki e (ki b b f) (ki e c d), from ki9 h4,

have h6 : ki e b (ki e f (ki e c d)), from ki6 h5,

have h7 : ki e b (ki e c (ki e f d)), from ki12_ki h6,

have h8 : ki e (ki b b c) (ki e f d), from ki5 h7,

have h9 : ki e f (ki e (ki b b c) d), from ki12 h8,

have h10 : ki e f a, from ki8 h1,

show ki e f (ki a (ki b b c) d), from ki7 h10 h9

• kiki6

theorem ki6_ki {a b c d e f : Prop} (h1 : ki e f (ki a (ki b b c) d)) :

ki e f (ki a b (ki a c d)) :=

have h2 : ki e f (ki e (ki b b c) d), from ki9 h1,

have h3 : ki e (ki b b c) (ki e f d), from ki12 h2,

have h4 : ki e b (ki e c (ki e f d)), from ki6 h3,



61

have h5 : ki e b (ki e f (ki e c d)), from ki12_ki h4,

have h6 : ki e f (ki e b (ki e c d)), from ki12 h5,

have h7 : ki e (ki f f b) (ki e c d), from ki5 h6,

have h8 : ki e f a, from ki8 h1,

have h9 : ki e (ki f f b) a, from ki14 h8,

have h10 : ki e (ki f f b) (ki a c d), from ki7 h9 h7,

have h11 : ki e f (ki e b (ki a c d)), from ki6 h10,

show ki e f (ki a b (ki a c d)), from ki7 h8 h11

• kiki7

theorem ki7_ki {a b c d e f g : Prop}

(h1 : ki f g (ki a e b))

(h2 : ki f g (ki a e (ki a c d))) :

ki f g (ki a e (ki b c d)) :=

have h3 : ki f g (ki f e b), from ki9 h1,

have h4 : ki f (ki g g e) b, from ki5 h3,

have h5 : ki f g a, from ki8 h1,

have h6 : ki f g (ki f e (ki a c d)), from ki9 h2,

have h7 : ki f (ki g g e) (ki a c d), from ki5 h6,

have h8 : ki f (ki g g e) (ki f c d), from ki9 h7,

have h9 : ki f (ki g g e) (ki b c d), from ki7 h4 h8,

have h10 : ki f g (ki f e (ki b c d)), from ki6 h9,

show ki f g (ki a e (ki b c d)), from ki7 h5 h10

• kiki8

theorem ki8_ki {a b c d e f g : Prop} (h1 : ki f g (ki a e (ki b c d))) :

ki f g (ki a e b) :=

have h2 : ki f g (ki f e (ki b c d)), from ki9 h1,

have h3 : ki f (ki g g e) (ki b c d), from ki5 h2,

have h4 : ki f (ki g g e) b, from ki8 h3,

have h5 : ki f g (ki f e b), from ki6 h4,

have h6 : ki f g a, from ki8 h1,

show ki f g (ki a e b), from ki7 h6 h5

• kiki9

theorem ki9_ki {a b c d e f g : Prop} (h1 : ki f g (ki a e (ki b c d))) :

ki f g (ki a e (ki a c d)) :=

have h2 : ki f g a, from ki8 h1,
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have h3 : ki f g (ki f e (ki b c d)), from ki9 h1,

have h4 : ki f (ki g g e) (ki b c d), from ki5 h3,

have h5 : ki f (ki g g e) (ki f c d), from ki9 h4,

have h6 : ki f (ki g g e) a, from ki14 h2,

have h7 : ki f (ki g g e) (ki a c d), from ki7 h6 h5,

have h8 : ki f g (ki f e (ki a c d)), from ki6 h7,

show ki f g (ki a e (ki a c d)), from ki7 h2 h8

Having the ki-lifted versions of each primitive rule of Bki, we are ready to prove a

deduction theorem for this calculus.

Lemma 4.4.3. The following property holds for `Bki
:

for all Γ ∪ {A,B,C} ⊆ Lki. if Γ,A,B `Bki
C then Γ,A `Bki

ki(A,B,C) (δki)

Proof. Let Γ ∪ {A,B,C} ⊆ Lki. The proof goes by induction on the derivation of C from

Γ∪{A,B}. In this way, suppose that Γ,A,B `Bki
C, and that this is witnessed by a formal

proof consisting of the sequence of formulas D1, . . . ,Dn, where n ≥ 1, with Dn = C. We

will prove that Γ,A `Bki
ki(A,B,Dj) for all 1 ≤ j ≤ n. For the base case, when n = 1,

there are three cases. First, when D1 ∈ Γ, we have Γ,A `Bki
ki(A,B,D1) by ki10 from the

facts that Γ,A `Bki
A (by (R) and (M)) and Γ,A `Bki

D1 (since D1 ∈ Γ by hypothesis).

Second, when D1 is A, the previous reasoning works similarly. Third, when D1 is B, by

ki11 applied to A, we get ki(A,B,B), which translates to ki(A,B,D1), since B is D1 by

hypothesis. Now, in the induction step, suppose that Γ,A `Bki
ki(A,B,Dk) for all k < j

and some j > 1. If Dj ∈ Γ ∪ {A,B}, then the proof is analogous to the one for the

base case. Otherwise, Dj results from the application of some instance 〈Dk1 , . . . ,Dkm ,Dj〉,
where kl < j for 1 ≤ l < j, of one m-ary primitive rule of Bki, say kil. From the induction

hypothesis and the corresponding ki-lifted version, namely kikil , proved to be derivable in

Lemma 4.4.2, we have that ki(A,B,Dj) is provable from Γ ∪ {A}. The desired result is

the case j = n.

Lemma 4.4.4. Every set Γ+ that is Z-maximal with respect to `Bki
is maximal (consis-

tent).

Proof. Suppose that Γ+ ⊆ Lki is Z-maximal and assume that A 6∈ Γ+. Our goal is to prove

that Γ+,A `Bki
B for any B ∈ Lki. First of all, take C ∈ Γ+ (Lemma 2.6.2 allows us to
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do this). A fundamental step for proving this lemma is showing that Γ+ `Bki
ki(C,Z,B).

In this direction, suppose, for the sake of contradiction, that Γ+ 6`Bki
ki(C,Z,B). The

following reasoning proves the desired result by deriving an absurd:

(1) Γ+, ki(C,Z,B) `Bki
Z Lemma 2.6.1.1

(2) Γ+,C, ki(C,Z,B) `Bki
Z 1 (M)

(3) Γ+,C `Bki
ki(C, ki(C,Z,B),Z) 2 δki

(4) C `Bki
C (R)

(5) Γ+,C `Bki
C 4 (M)

(6) Γ+,C `Bki
ki(C, ki(C, ki(C,Z,B),Z),Z) 5 ki′4

(7) Γ+,C `Bki
Z 3, 6 ki1

(8) Γ+ `Bki
Z 7,C ∈ Γ+

Because Γ+ `Bki
ki(C,Z,B), we get (a): Γ+,A `Bki

ki(C,Z,B) by (M). Since A 6∈ Γ+,

we also have (b): Γ+,A `Bki
Z. Then these consecutions, by ki1, yield Γ+,A `Bki

B, proving

that Γ+ is maximal.

Theorem 4.4.5. The calculus Bki is complete with respect to the matrix 2ki.

Proof. Let Γ ∪ {Z} ⊆ Lki such that Γ 6`Bki
Z and take a Z-maximal theory Γ+ ⊇ Γ by

the Lindenbaum-Asser Lemma. From the truth-table of ki and the formulation given in

Section 2.7, the completeness property (ki) is given by:

ki(A,B,C) ∈ Γ+ iff A ∈ Γ+ and (B 6∈ Γ+ or C ∈ Γ+) (ki)

In the left-to-right direction, suppose that (a): ki(A,B,C) ∈ Γ+. By ki0, Γ+ `Bki
A, so

A ∈ Γ+. By cases, the desired result is directly obtained when B 6∈ Γ+, and, if B ∈ Γ+,

then (b): Γ+ `Bki
B, and, by ki1 from (a) and (b), Γ+ `Bki

C, hence C ∈ Γ+ as desired.

From the right to the left, suppose that A ∈ Γ+, thus (c): Γ+ `Bki
A. Let us work again

by cases. Suppose that B 6∈ Γ+. Then, Lemma 4.4.4 implies that Γ+,B `Bki
C, and, by

(M), Γ+,A,B `Bki
C. By δki, Γ+,A `Bki

ki(A,B,C), and, because of (c), we conclude that

Γ+ `Bki
ki(A,B,C). Now, if C ∈ Γ+, then (d): Γ+ `Bki

C. By ki10 from (c) and (d), we get

Γ+ `Bki
ki(A,B,C), so ki(A,B,C) ∈ Γ+.

Remark 4.4.1. Similarly to what occurs for the calculus Bka, if a new rule r is added to

Bki, then deriving its ki-lifted version, namely rki, causes the completeness property (ki)

to be preserved in the expanded calculus.



64

The proposed calculus for the expansion Bki,⊥ results from adding an interaction rule

to Bki, as presented below:

Hilbert Calculus 12. Bki,⊥

Bki

ki(A,B,⊥)

ki(A,B,C)
kib1

Theorem 4.4.6. The calculus Bki,⊥ is sound with respect to the matrix 2ki,⊥.

Proof. Since the rules of Bki are sound with respect to 2ki (see Theorem 4.4.1), it remains

to prove soundness for rule kib1 with respect to 2ki,⊥. Consider v an arbitrary 2ki,⊥-

valuation such that v(ki(A,B,⊥)) = 1, then v(A) = 1 and v(B) = 0, forcing the conclusion

to be evaluated to 1.

The completeness proof in this case is analogous to that of Bka,⊥: we need to derive

the ki-lifted version of the new rule, as well as rule b1.

Lemma 4.4.7. The following rules are derivable in Bki,⊥:

ki(D,E, ki(A,B,⊥))

ki(D,E, ki(A,B,C))
kibki

1

⊥
A

b1

Proof. The formally verified derivation of each rule is presented below:

• kibki
1

theorem kib1_ki {a b c d e : Prop} (h1 : ki d e (ki b a bot)) : ki d e (ki b a c) :=

have h2 : ki d e (ki d a bot), from ki.ki9 h1,

have h3 : ki d (ki e e a) bot, from ki.ki5 h2,

have h4 : ki d (ki e e a) c, from kib1 h3,

have h5 : ki d e (ki d a c), from ki.ki6 h4,

have h6 : ki d e b, from ki.ki8 h1,

show ki d e (ki b a c), from ki.ki7 h6 h5

• b1
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theorem b1 {a : Prop} (h1 : bot) : a :=

have h2 : ki bot bot bot, from ki.ki10 h1 h1,

have h3 : ki bot bot a, from kib1 h2,

show a, from ki.ki1 h1 h3

Theorem 4.4.8. The calculus Bki,⊥ is complete with respect to the matrix 2ki,⊥.

Proof. The derived rules b1 and kibki
1 , in view of Remark 4.1.1 and Remark 4.3.1, imply

the completeness properties (⊥) and (ki), respectively.

4.4.2 On the expansions of Bki and Bki,⊥

In [11, Section 3], we find results that allow to generate calculi for expansions of some

fragments based on known axiomatizations. Although their ultimost consequence is the

axiomatizability of the infinite portion of Post’s lattice, we can use them to axiomatize

some fragments of the finite portion. In this section, we present, without proving, a the-

orem that allows us to axiomatize logics that expand Bki, located in the highest part of

Post’s lattice, covered in Section 4.15. The proof given by Rautenberg provides a clear

procedure to construct the calculi for such expansions.

Theorem 4.4.9. An axiomatization of any expansion of Bki and Bki,⊥ is obtained, respec-

tively, from Bki and Bki,⊥ by adding several at most unary rules.

Proof. See Theorem 1.1 in [11, p. 336].

4.5 B∨,B∨,>,B∨,⊥,B∨,⊥,>

In this section, we propose axiomatizations for B∨ and its expansions by the constants

> and ⊥. Moreover, some properties about the connective ∨ and its rules, to be used

in future sections, will be proved. Also, we will give a result that provide a recipe for

constructing axiomatizations for any monotonic expansion of 2∨.

Hilbert Calculus 13. B∨
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A
A ∨ B

d1
A ∨ A

A
d2

A ∨ B
B ∨ A

d3

A ∨ (B ∨ C)

(A ∨ B) ∨ C
d4

Theorem 4.5.1. The calculus B∨ is sound with respect to the matrix 2∨.

Proof. Consider the truth-table presenting all possible truth-values of the formulas in-

volved in the rules of B∨ under 2∨-valuations:

A B C A ∨ B A ∨ A B ∨ A A ∨ (B ∨ C) (A ∨ B) ∨ C

1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 0 1 1 1 1 1 1

1 0 0 1 1 1 1 1

0 1 1 1 0 1 1 1

0 1 0 1 0 1 1 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0

Notice from the table above that it is never the case that the premisses of the rules

evaluates to 1 and the conclusion evaluates to 0.

In what follows, if d is an n-ary rule, with n ∈ ω, let d∨, the ∨-lifted version of d, be

the rule given by the set of instances 〈C ∨ A1, . . . ,C ∨ An,C ∨ B〉, where 〈A1, . . . ,An,B〉
is an instance of d and C ∈ L∨. The next lemma establishes in particular that the ∨-
lifted versions of the primitive rules of B∨ are derivable in this system, a fundamental

result for proving the subsequent monotonicity property m∨, and thus, as we will see, the

completeness of this calculus with respect to 2∨.

Lemma 4.5.2. The following rules are derivable in B∨:
B

A ∨ B
d′1

(A ∨ B) ∨ C

A ∨ (B ∨ C)
d′4

C ∨ A
C ∨ (A ∨ B)

d∨1

B ∨ (A ∨ A)

B ∨ A
d∨2
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C ∨ (A ∨ B)

C ∨ (B ∨ A)
d∨3

D ∨ (A ∨ (B ∨ C))

D ∨ ((A ∨ B) ∨ C)
d∨4

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• d′1

theorem d1’ {a b : Prop} (h1 : b) : or a b :=

have h2 : or b a, from or.d1 h1,

show or a b, from or.d3 h2

• d′4

theorem d4’ {a b c : Prop} (h1 : or (or a b) c) : or a (or b c) :=

have h2 : or c (or a b), from or.d3 h1,

have h3 : or (or c a) b, from or.d4 h2,

have h4 : or b (or c a), from or.d3 h3,

have h5 : or (or b c) a, from or.d4 h4,

show or a (or b c), from or.d3 h5

• d∨1

theorem d1_or {a b c : Prop} (h1 : or c a) : or c (or a b) :=

have h2 : or (or c a) b, from or.d1 h1,

show or c (or a b), from or.d4’ h2

• d∨2

theorem d2_or {a b : Prop} (h1 : or b (or a a)) : or b a :=

have h2 : or (or b a) a, from or.d4 h1,

have h3 : or a (or b a), from or.d3 h2,

have h4 : or b (or a (or b a)), from or.d1’ h3,

have h5 : or (or b a) (or b a), from or.d4 h4,

show or b a, from or.d2 h5

• d∨3
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theorem d3_or {a b c : Prop} (h1 : or c (or a b)) : or c (or b a) :=

have h2 : or (or c a) b, from or.d4 h1,

have h3 : or (or (or c a) b) a, from or.d1 h2,

have h4 : or (or c a) (or b a), from or.d4’ h3,

have h5 : or c (or a (or b a)), from or.d4’ h4,

have h6 : or (or a (or b a)) c, from or.d3 h5,

have h7 : or a (or (or b a) c), from or.d4’ h6,

have h8 : or b (or a (or (or b a) c)), from or.d1’ h7,

have h9 : or (or b a) (or (or b a) c), from or.d4 h8,

have h10 : or (or (or b a) (or b a)) c, from or.d4 h9,

have h11 : or c (or (or b a) (or b a)), from or.d3 h10,

show or c (or b a), from or.d2_or h11

• d∨4

theorem d4_or {a b c d : Prop} (h1 : or d (or a (or b c))) : or d (or (or a b) c) :=

have h2 : or (or d a) (or b c), from or.d4 h1,

have h3 : or (or d a) (or c b), from or.d3_or h2,

have h4 : or (or (or d a) c) b, from or.d4 h3,

have h5 : or (or (or (or d a) c) b) a, from or.d1 h4,

have h6 : or (or (or d a) c) (or b a), from or.d4’ h5,

have h7 : or (or (or d a) c) (or a b), from or.d3_or h6,

have h8 : or (or d a) (or c (or a b)), from or.d4’ h7,

have h9 : or (or d a) (or (or a b) c), from or.d3_or h8,

let e := or (or a b) c in

have h10 : or (or d a) e, from h9,

have h11 : or d (or a e), from or.d4’ h10,

have h12 : or d (or e a), from or.d3_or h11,

have h13 : or (or d e) a, from or.d4 h12,

have h14 : or (or (or d e) a) b, from or.d1 h13,

have h15 : or (or d e) (or a b), from or.d4’ h14,

have h16 : or (or (or d e) (or a b)) c, from or.d1 h15,

have h17 : or (or d e) (or (or a b) c), from or.d4’ h16,

have h18 : or (or d e) e, from h17,

have h19 : or d (or e e), from or.d4’ h18,

have h20 : or d e, from or.d2_or h19,

show or d (or (or a b) c), from h20
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Lemma 4.5.3. The following property holds for `B∨:

for all Γ ∪ {A,B,C} ⊆ L∨. if Γ,A `B∨ B then Γ,C ∨ A `B∨ C ∨ B (m∨)

Proof. Let Γ ∪ {A,B,C} ⊆ L∨. Suppose that Γ,A `B∨ B and that this is established by

a proof consisting of the sequence P1, . . . ,Pn = B of formulas, for some n ∈ ω. The fact

that Γ,C ∨ A `B∨ C ∨ Pj, for all 1 ≤ j ≤ n, can be shown by induction on j. In the

base case, j = 1, P1 is either A itself or is a member of Γ. In the first case, since P1 = A,

Γ,C∨A `B∨ C∨P1 by an appeal to (R) and (M). In the second case, if P1 ∈ Γ, by taking

assumptions in Γ ∪ {C ∨ A}, the desired conclusion follows simply by the proof below:

(1) P1 P1 ∈ Γ

(2) C ∨ P1 1 d1

For the inductive step, suppose that Γ,C ∨ A `B∨ C ∨ Pk holds for all k < j. Then,

either (a): Pj is A, or (b): it is in Γ or (c): it follows by the application of an instance

〈Pk1 , . . . ,Pkm ,Pj〉 of some m-ary primitive rule, say d, to premisses Pk1 , . . . ,Pkm , kl < j,

for all 1 ≤ l ≤ m. Cases (a) and (b) follow by the same arguments used in the proof

of the base case. For case (c), notice that the formulas C ∨ Pk1 , . . . ,C ∨ Pkm follow from

Γ ∪ {C ∨ A} by the inductive hypothesis. Using those formulas, by the corresponding

derived rule d∨ presented in Lemma 4.5.2, one gets C ∨ Pj. The case where j = n is the

desired one for the present proof.

The above result can be extended to a form that will be useful in Section 4.7. Before

going to it, let B ∨0 A := A and B ∨n+1 A := B∨ (B∨n A), where A,B ∈ L∨ and n ∈ ω,
and consider the following lemma:

Lemma 4.5.4. For any A,B ∈ L∨ and n ∈ ω, B ∨n A `B∨ B ∨ A.

Proof. Proceed by induction on n. The base case (n = 0) follows by rule d′1. In the

inductive step, suppose that (IH): B ∨k A `B∨ B ∨ A, for some k > 0. Since B∨k+1 A =
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B ∨ (B ∨k A), the following reasoning establishes the desired result:

(1) B ∨ (B ∨k A) `B∨ B ∨ (B ∨k A) (R)

(2) B ∨ (B ∨k A) `B∨ B ∨ (B ∨ (B ∨k−1 A)) 1 Definition of ∨n

(3) B ∨ (B ∨k A) `B∨ (B ∨ B) ∨ (B ∨k−1 A) 2 d4

(4) B ∨ (B ∨k A) `B∨ (B ∨k−1 A) ∨ (B ∨ B) 3 d3

(5) B ∨ (B ∨k A) `B∨ (B ∨k−1 A) ∨ B 4 d∨2

(6) B ∨ (B ∨k A) `B∨ B ∨ (B ∨k−1 A) 5 d3

(7) B ∨ (B ∨k A) `B∨ B ∨k A 6 Definition of ∨n

(8) B ∨k A `B∨ B ∨ A (IH)

(9) B ∨ (B ∨k A) `B∨ B ∨ A 7, 8 (T)

Corollary 4.5.4.1. If Γ,A `B∨ B, then Γ∨,C∨A `B∨ C∨B, where Γ∪ {A,B,C} ⊆ L∨

and Γ∨ := {C ∨D ∈ L∨ | D ∈ Γ}.

Proof. Let Γ ∪ {A,B,C} ⊆ L∨ and suppose that Γ,A `B∨ B. Since `B∨ is finitary,

Γ0,A `B∨ B, for some finite Γ0 ⊆ Γ. Let n ∈ ω be the cardinality of Γ0. Then subsequent

applications of m∨ lead to Γ∨0 ,C ∨ A `B∨ C ∨n+1 B. By Lemma 4.5.4 and (T), we get

Γ∨0 ,C ∨ A `B∨ C ∨ B. Finally, because Γ∨0 ⊆ Γ∨, we get the desired conclusion by (M)

applied to the latter consecution.

We now proceed to the completeness proof of the calculus B∨ with respect to 2∨. For

that we need the deduction theorem for disjunction, presented in the next lemma, from

which the completeness result follows in a straightforward way.

Lemma 4.5.5. The following property holds for `B∨:

for all Γ ∪ {A,B,C} ⊆ L∨. if Γ,A `B∨ C and Γ,B `B∨ C then Γ,A ∨ B `B∨ C (δ∨)

Proof. Suppose that (h1): Γ,A `B∨ C and (h2): Γ,B `B∨ C. By (m∨) applied to (h1),

we obtain the consecution Γ,C ∨ A `B∨ C ∨ C, which, by an application of rule d2,

gives (h’1): Γ,C ∨ A `B∨ C. Moreover, by m∨ applied to (h2), we get the consecution

Γ,A∨B `B∨ A∨C, from which, by rule d3, we have (h’2): Γ,A∨B `B∨ C∨A. From (h′1),

by (M), one gets Γ,A∨B,C∨A `B∨ C, which, together with (h′2), results in Γ,A∨B `B∨ C

by (T).

Theorem 4.5.6. The calculus B∨ is complete with respect to the matrix 2∨.
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Proof. Following the recipe presented in Section 2.7, suppose that Γ 6`B∨ Z, where Γ ∪
{Z} ⊆ L∨, and consider a Z-maximal Γ+ ⊇ Γ via the Lindenbaum-Asser Lemma. An

specialization of property (#) for disjunction gives

A ∨ B ∈ Γ+ iff A ∈ Γ+ or B ∈ Γ+, (∨)

for all A,B ∈ L∨, and proving it gives the desired completeness result since ∨ is the sole

connective in the fragment under discussion. For the right-to-left direction, assume that

(a) A ∈ Γ+ or (b) B ∈ Γ+. By cases, if (a) holds, then Γ+ `B∨ A∨B by (T) applied to (a)

and the corresponding instance of d1, meaning that A ∨ B ∈ Γ+, since Γ+ is deductively

closed. Similarly, the same conclusion is reached when (b) is the case, the only difference

being the usage of an instance of the rule d′1 instead of d1. For the left-to-right direction,

suppose that A ∨ B ∈ Γ+. By Corollary 2.6.1.1, this implies that Γ+,A ∨ B 6`B∨ Z. By

the contrapositive version of δ∨ (see Lemma 4.5.5), Γ+,A 6`B∨ Z or Γ+,B 6`B∨ ϕ, which,

again by Corollary 2.6.1.1, implies that A ∈ Γ+ or B ∈ Γ+.

Remark 4.5.1. Notice that a sufficient condition for the preservation of the property m∨,

and thus the deduction theorem δ∨ and the completeness property (∨), in any expansion

of the calculus B∨ by non-nullary rules is that, for any of the new rules, say r, its lifted

version r∨ is derivable in the expanded calculus.

A last fact about the calculus B∨ is necessary for proving an important result in

Section 4.7. In what follows, let d∨,n, n > 1, denote the rule resulting from n successive

∨-liftings of rule d.

Lemma 4.5.7. Let B∨,{fi}i∈I
be any expansion of B∨. If the rule

C ∨ A
C ∨ B r∨

is derivable in this calculus, then the rules

A
B

r
D ∨ (C ∨ A)

D ∨ (C ∨ B)
r∨,2

are also derivable.

Proof. Suppose that the rule r∨, as presented in the statement, is derivable in B∨. Then
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the following derivation proves the derivability of r:

(1) A Assumption

(2) A ∨ B 1 d1

(3) B ∨ A 2 d3

(4) B ∨ B 3 r∨

(5) B 4 d2

And the derivation below shows the derivability of r∨,2:

(1) D ∨ (C ∨ A) Assumption

(2) (D ∨ C) ∨ A 1 d4

(3) (D ∨ C) ∨ B 2 r∨

(4) D ∨ (C ∨ B) 3 d′4

The expansion B∨,⊥ is easily seen to be axiomatized by the calculus below, given

Corollary 2.8.4.1.

Hilbert Calculus 14. B∨,>

B∨ B>

However, the calculus for the expansion of B∨ by ⊥ does not consist of simply adding

rule b1 to B∨, as in the case of B∧,⊥. In fact, doing so would result in a still incomplete

calculus, because the rule (db1) A ∨ ⊥/A would be independent (consider the matrix

over {0, 1, 2} given by M = 〈M, {1}〉 such that x∨My = 1 if x 6= y and x∨Mx = x,

and ⊥M = 0). Therefore, if we want to expand the calculus for disjunction, we must find

another rule to produce a calculus that preserves the completeness property for disjunction

and allows to prove such property for ⊥. It turns out that rule db1 is the one we need:

Hilbert Calculus 15. B∨,⊥

B∨
A ∨ ⊥

A
db1

Theorem 4.5.8. The calculus B∨,⊥ is sound with respect to the matrix 2∨,⊥.
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Proof. Soundness need to be checked only for db1, since the rules of B∨ only involve the

connective ∨ and the soundness of its “pure” rules was already proved. Notice that, if A

is evaluated to 0, the sole premiss A ∨ ⊥ would necessarily be evaluated also to 0, thus

db1 is sound with respect to 2∨,⊥.

Lemma 4.5.9. The following rules are derivable in B∨,⊥:

B ∨ (A ∨ ⊥)

B ∨ A
db∨1

⊥
A

b1

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• db∨1

theorem db1_or {a b : Prop} (h1 : or b (or a bot)) : or b a :=

have h2 : or (or b a) bot, from or.d4 h1,

show or b a, from db1 h2

• b1

theorem b1 {a : Prop} (h1 : bot) : a :=

have h2 : or bot a, from or.d1 h1,

have h3 : or a bot, from or.d3 h2,

show a, from db1 h3

Theorem 4.5.10. The calculus B∨,⊥ is complete with respect to the matrix 2∨,⊥.

Proof. Because db∨1 and b1 are derivable, properties (∨) and (⊥) hold in B∨,⊥, thus

implying the completeness of this calculus.

As usual, the expansion B∨,⊥,> is axiomatized by the calculus below, given Corol-

lary 2.8.4.1.

Hilbert Calculus 16. B∨,⊥,>
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B∨,⊥ B>

4.5.2 Monotonic expansions of B∨

We focus now on a theorem useful for proving the axiomatizability of monotonic

expansions of B∨. In this work, it was applied to prove the axiomatizability of the fragment

Bak (see Section 4.6). We start by proving a Conjunctive Normal Form for monotonic

functions over {0, 1}, then we proceed to the main result.

Lemma 4.5.11. If f2 is an m-ary monotonic operation over {0, 1}, then there are n ∈ ω
and Pi ∈ Lp1,...,pm

∨,>,⊥ , for 1 ≤ i ≤ n, such that

f2 =

( ∧
1≤i≤n

Pi

)2∨,∧

.

Proof. The proof goes by induction on the arity m. If m = 0, then f2 is either 1

or 0, then take n = 1 and P1 = > in the first case, and P1 = ⊥ in the other.

Now, suppose that the statement holds for every m < k, with k > 0, and de-

fine the operations f0
2 and f1

2 such that f0
2(x1, . . . , xk−1) = f2(x1, . . . , xk−1, 0) and

f1
2(x1, . . . , xk−1) = f2(x1, . . . , xk−1, 1), which inherit from f2 the property of being

monotonic (see Example 2.1.2). Let ~x abbreviate the sequence x1, . . . , xk−1 and read ∨
and ∧ as ∨2 and ∧2 , respectively, to simplify notation. Then we can show that (a):

f2(~x, xk) = (xk∧f1
2(~x))∨f0

2(~x), by analysing the possible values for xk. In case of value

0, we have (0 ∧ f1
2(~x)) ∨ f0

2(~x) = f0
2(~x) = f2(~x, 0) = f2(~x, xk). In case of xk = 1, we

have (1 ∧ f1
2(~x)) ∨ f0

2(~x) = f1
2(~x) ∨ f0

2(~x). Since 〈~x, 0〉 ≤ 〈~x, 1〉 and f2 is monotonic,

we have f0
2(~x) ≤ f1

2(~x), implying two cases: either f0
2(~x) = f1

2(~x) or f0
2(~x) = 0 and

f1
2(~x) = 1. In both cases, f1

2(~x) ∨ f0
2(~x) = f1

2(~x) = f2(~x, 1) = f2(~x, xk). From (a), by

using distributivity of ∨ over ∧, and the induction hypothesis applied to f0
2 and f1

2 , we

reach the desired result.

Theorem 4.5.12. Any monotonic expansion of B∨ is axiomatizable.

Proof. Let f be an m-ary symbol, whose 2-valued interpretation is given by f2 , a mono-

tonic function over {0, 1}. Notice that the cases f2 = >2 and f2 = ⊥2 were already

axiomatized, so we may consider m ≥ 1. By the Conjunctive Normal Form for mono-

tonic functions presented in Lemma 4.5.11, there are n ∈ ω and formulas Pi ∈ Lp1,...,pm
∨ ,
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1 ≤ i ≤ n, such that f2 =
(∧

1≤i≤n Pi

)2∨,∧ . Then consider the rules

P1 . . . Pm

f(p1, . . . , pm)
f0

f(p1, . . . , pm)

Pi
fi, 1 ≤ i ≤ n

and the following calculus:

Hilbert Calculus 17. B∨,f , f monotonic

B∨

pm+1 ∨ P1 . . . pm+1 ∨ Pm

pm+1 ∨ f(p1, . . . , pm)
f∨0

pm+1 ∨ f(p1, . . . , pm)

pm+1 ∨ Pi
f∨i , 1 ≤ i ≤ n

We proceed to argue about the soundness of B∨,f with respect to 2∨,f . Notice that

the rules of B∨ were already proved sound earlier in this section. About rule f∨0 , if its

conclusion is evaluated to false, then pm+1 and Pi are both evaluated to false, and, since

f(p1, . . . , pm) is evaluated to a conjunction of all Pi, it is also falsified, so there is no way

to evaluate the premiss to true. The argument for the other rules is analogous.

To prove the completeness of this calculus, first notice that the completeness property

for f , as a direct consequence of the Conjunctive Normal Form referred above, is given by

f(A1, . . . ,An) ∈ Γ+ iff Pσ
1 , . . . ,P

σ
n ∈ Γ+ (f)

where σ is a substitution such that σ(pi) = Ai, for all 1 ≤ i ≤ n. The desired result hence

follows by showing that both (∨) and (f) hold in B∨,f . By Lemma 4.5.7, f∨i
,2 holds for

every rule f∨i , where 0 ≤ i ≤ n, and hence m∨ and δ∨ hold, implying finally that (∨) also

holds in this calculus. Now, it remains to show that (f) also holds. For that, consider the

fact that the rules fi, where 1 ≤ i ≤ n, hold in this calculus, by Lemma 4.5.7. Then from

the left to the right, apply the instances of rules fi, where 1 ≤ i ≤ n, corresponding to

the appropriate substitution σ. From the right to the left, use the appropriate instance of

rule f0.
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4.6 Bak,Bak,>

The classical connective ak may be defined from those in B via the translation t(ak) =

λp, q, r.p ∨ (q ∧ r), hence its interpretation in 2ak is monotonic. Moreover, notice that ∨2

is definable by λx, y.ak2(x, y, y), thus 2ak is a monotonic expansion of 2∨. Henceforth, we

will use the abbreviation A∨ak B for ak(A,B,B). Then, by Theorem 4.5.12, the following

calculus axiomatizes the fragment Bak:

Hilbert Calculus 18. Bak

B∨, with ∨ := ∨ak

D ∨ak (A ∨ak B) D ∨ak (A ∨ak C)

D ∨ak ak(A,B,C)
ak1

D ∨ak ak(A,B,C)

D ∨ak (A ∨ak B)
ak2

D ∨ak ak(A,B,C)

D ∨ak (A ∨ak C)
ak3

Then, by Corollary 2.8.4.1, the following calculus axiomatizes Bak,>:

Hilbert Calculus 19. Bak,>

Bak B>

4.7 Bad, Bad,>

The classical connective ad may be defined from those in B by means of the translation

t(ad) = λp, q, r.p∨ (q∧¬r). In what follows, abbreviate ad(A,B,A) by A∨ad B and notice

that its semantics in 2ad is the same as ∨ in 2. Although the proposed calculus is large,

with twenty-five rules, the way it was conceived is not hard to understand. We establish

the rules ad1−ad11, then we take from B∨ the rules d2−d4, and finally add the ∨ad-lifted
(same notion of ∨-lifted rules) versions of rules ad1−ad11. Such choices will greatly simplify

the proofs that are to come. Below we present Bad followed by the proof of soundness

with respect to 2ad.
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Hilbert Calculus 20. Bad

C ad(A,B,C)

A
ad1

A
ad(ad(C,A,B),A,C)

ad2

ad(A,B,C)

ad(ad(ad(ad(F,A,D),A, ad(E,A,D)),A, ad(ad(F,A,E),A,D)),B,C)
ad3

ad(A,B,C)

ad(ad(D,A, ad(D,A, ad(E,A,D))),B,C)
ad4

ad(A,B,C)

B ∨ad A
ad5

A
ad(A,B,C)

ad6

ad(C ∨ad D,A,B)

ad(C,A,B) ∨ad ad(D,A,B)
ad7

ad(C,A,B) ∨ad ad(D,A,B)

ad(C ∨ad D,A,B)
ad8

ad(A,B,C) ad(D,E,A)

ad(D,B,C)
ad9

ad(ad(E,D,C),A,B)

ad(E,A,B) ∨ad ad(E,D,C)
ad10

ad(E,A,B) ∨ad ad(E,D,C)

ad(ad(E,D,C),A,B)
ad11

A ∨ad A
A

ad12

A ∨ad B
B ∨ad A

ad13

A ∨ad (B ∨ad C)

(A ∨ad B) ∨ad C
ad14

D ∨ad C D ∨ad ad(A,B,C)

D ∨ad A
ad15

D ∨ad A
D ∨ad ad(ad(C,A,B),A,C)

ad16
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G ∨ad ad(A,B,C)

G ∨ad ad(ad(ad(ad(F,A,D),A, ad(E,A,D)),A, ad(ad(F,A,E),A,D)),B,C)
ad17

F ∨ad ad(A,B,C)

F ∨ad ad(ad(D,A, ad(D,A, ad(E,A,D))),B,C)
ad18

D ∨ad ad(A,B,C)

D ∨ad ad(B,A,B)
ad19

D ∨ad A
D ∨ad ad(A,B,C)

ad20

E ∨ad ad(C ∨ad D,A,B)

E ∨ad (ad(C,A,B) ∨ad ad(D,A,B))
ad21

E ∨ad (ad(C,A,B) ∨ad ad(D,A,B))

E ∨ad ad(C ∨ad D,A,B)
ad22

F ∨ad ad(B,D,E) F ∨ad ad(C,A,B)

F ∨ad ad(E,D,C)
ad23

F ∨ad ad(ad(E,D,C),A,B)

F ∨ad (ad(E,A,B) ∨ad ad(E,D,C))
ad24

F ∨ad (ad(E,A,B) ∨ad ad(E,D,C))

F ∨ad ad(ad(E,D,C),A,B)
ad25

Theorem 4.7.1. The calculus Bad is sound with respect to the matrix 2ad.

Proof. Let v be a 2ad-valuation, and, to simplify notation, denote also by v the 2-valuation

v′ such that v = t◦v′. For rule ad1, suppose that v(C) = 1 and v(ad(A,B,C)) = 1. Then,

v(B∧¬C) = 0, so v(A) = 1. For rule ad2, suppose that v(A) = 1. Then any value of v(C)

leads v to assign 1 to the conclusion. For rule ad3, suppose that v(ad(A,B,C)) = 1. Then,

we have two cases:

• v(B ∧ ¬C) = 1: clearly causes v to assign 1 to the premiss; or

• v(A) = 1: our goal is then to show (a): v(ad(ad(F,A,D),A, ad(E,A,D))) = 1 or

(b): v(ad(ad(F,A,E),A,D)) = 0. Let us work on the possible values for D, E and F

under v:

– v(D) = 0 or v(F) = 1: we have v(ad(F,A,D)) = 1, thus (a).

– v(D) = 1, v(E) = 1 and v(F) = 0: we have v(ad(F,A,E)) = 0, thus (b).

– v(D) = 1 and v(E) = 0: we have v(ad(E,A,D)) = 0, thus (a).
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For rule ad4, the proof is similar, with the non-trivial case being v(A) = 1. Our goal is

then to show that (c): v(ad(D,A, ad(D,A, ad(E,A,D)))) = 1. Notice that if v(D) = 1,

then (c). Otherwise, we have v(ad(E,A,D)) = 1, then v(ad(D,A, ad(E,A,D))) = 0, and

thus (c). The soundness of rules ad5 and ad6 follows directly from the determinants of

ad in 2ad. For rule ad7, suppose that v(ad(C ∨ad D,A,B)) = 1. Then (d): v(C ∨ad D) = 1

or (e): v(A) = 1 and B = 0. In the first case, either C or D is assigned the value 1, so

v(ad(C,A,B)) = 1 or v(ad(D,A,B)) = 1, and v assigns 1 to the conclusion. In the other

case, we have v(ad(C,A,B)) = 1 and v(ad(D,A,B)) = 1, and the conclusion also gets the

value 1 under v. For rule ad8, suppose that v(ad(C ∨ad D,A,B)) = 0. Then v(C∨adD) = 0,

i.e. v(C) = 0 and v(D) = 0, and v(A) = 0 or v(B) = 1. Notice that, under these conditions,

v(ad(C,A,B)) = 0 and v(ad(D,A,B)) = 0, so v assigns 0 to the premiss. For rule ad9,

suppose that v(ad(D,B,C)) = 0, so v(D) = 0 and v(B) = 0 or v(C) = 1. If v(B) = 0, case

v(A) = 0, we have v(ad(A,B,C)) = 0 and, case v(A) = 1, we have v(ad(D,E,A)) = 0. In

the other hand, if v(C) = 1, when v(A) = 0, we have v(ad(A,B,C)) = 0, and when v(A) =

1, we have v(ad(D,E,A)) = 0. For rule ad10, suppose that v(ad(ad(E,D,C),A,B)) = 1,

so v(ad(E,D,C)) = 1 or v(A) = 1 and v(B) = 0. In the first case, clearly v assigns

1 to the conclusion. In the second, we have v(ad(E,A,B)) = 1, so the conclusion also

is assigned to 1. The proof for ad11 is very similar. For rules ad12, ad13 and ad14, use

Theorem 4.5.1. For the remaining rules, it is enough to show that if a rule is sound with

respect to 2, then its ∨-lifted version is also sound with respect to 2. So suppose that

(r) A1, . . . ,An/An+1 is sound with respect to 2 and consider its ∨-lifted version given by

(r∨) B∨A1, . . . ,B∨An/B∨An+1. Then assume that v(B∨A1) = · · · = v(B∨An) = 1, hence

either v(B) = 1 or v(A1) = · · · = v(An) = 1. In the first case, trivially v(B ∨ An+1) = 1,

and, in the second, since r is sound, we have v(An+1) = 1, thus v(B ∨ An+1) = 1.

Lemma 4.7.2. Where ∨ := ∨ad, properties m∨ and δ∨ (see Lemma 4.5.3 and

Lemma 4.5.5, respectively) hold in Bad.

Proof. In view of Remark 4.5.1, we argue on the derivability of the ∨-lifted rules of Bad.

Notice that, by taking ∨ := ∨ad, the rules ad12, ad13 and ad14 are the same as d2, d3 and d4

(see Section 4.5). Also, rule d1 is a special case of ad6 (just take C = A), called ad′6 here. By

Lemma 4.5.2, the presence of those rules implies that their ∨-lifted versions are derivable.

Moreover, rules ad15, . . . , ad25 are the ∨-lifted versions of rules ad1, . . . , ad11. Finally, by

Lemma 4.5.7, the lifted versions of ad15, . . . , ad25 are derivable in this calculus.

In what follows, if r is an n-ary rule, with n ∈ ω, let rad, the ad-lifted version of r, be

the rule given by the set of instances 〈ad(A1,C,D), . . . , ad(An,C,D), ad(B,C,D)〉, where
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〈A1, . . . ,An,B〉 is an instance of r and C,D ∈ Lad. The main purpose of the next lemma

is to show that all ad-lifted versions of the primitive rules of ad are derivable in Bad, an

important step towards the completeness of this calculus with respect to 2ad.

Lemma 4.7.3. The following rules are derivable in Bad:
A B

ad(A,B,C)
ad26

A
ad(C,A, ad(C,A, ad(B,A,C)))

ad′4

ad(ad(A,B,C),D,E)

ad(ad(A,D,E),B,C)
ad27

A
A ∨ad B

ad′6

ad(C,D,E) ad(ad(A,B,C),D,E)

ad(A,D,E)
adad

1

ad(A,D,E)

ad(ad(ad(C,A,B),A,C),D,E)
adad

2

ad(ad(A,B,C),G,H)

ad(ad(ad(ad(ad(F,A,D),A, ad(E,A,D)),A, ad(ad(F,A,E),A,D)),B,C),G,H)
adad

3

ad(ad(A,B,C),F,G)

ad(ad(ad(D,A, ad(D,A, ad(E,A,D))),B,C),F,G)
adad

4

ad(ad(A,B,C),D,E)

ad(B ∨ad A,D,E)
adad

5

ad(A,D,E)

ad(ad(A,B,C),D,E)
adad

6

ad(ad(C ∨ad D,A,B),E,F)

ad(ad(C,A,B) ∨ad ad(D,A,B),E,F)
adad

7

ad(A ∨ad A,B,C)

ad(A,B,C)
adad

12

ad(A ∨ad B,C,D)

ad(B ∨ad A,C,D)
adad

13

ad(A ∨ad (B ∨ad C),D,E)

ad((A ∨ad B) ∨ad C,D,E)
adad

14

ad(ad(C,A,B),E,F)

ad(ad(C ∨ad D,A,B),E,F)
ad′8

ad(ad(C ∨ad D,A,B),E,F)

ad(ad(D ∨ad C,A,B),E,F)
ad′′8

ad(ad(C,A,B) ∨ad ad(D,A,B),E,F)

ad(ad(C ∨ad D,A,B),E,F)
adad

8
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ad(ad(A,B,C),F,G) ad(ad(D,E,A),F,G)

ad(ad(D,B,C),F,G)
adad

9

ad(ad(ad(E,D,C),A,B),F,G)

ad(ad(E,A,B) ∨ad ad(E,D,C),F,G)
adad

10

ad(ad(E,A,B) ∨ad ad(E,D,C),F,G)

ad(ad(ad(E,D,C),A,B),F,G)
adad

11

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3. Some derivations apply specialized versions of δ∨ given by

the sequent-style rules

A � C B � C
A ∨ B � C

δ∨1
D,A � C D,B � C

D,A ∨ B � C
δ∨2.

• ad26

theorem ad26 {a b c : Prop} (h1 : a) (h2 : b) : ad a b c :=

have h3 : ad (ad a b c) b a, from ad2 h2,

show ad a b c, from ad1 h1 h3

• ad′4

theorem ad4’ {a b c : Prop} (h1 : a) : ad c a (ad c a (ad b a c)) :=

have h2 : ad a a a, from ad26 h1 h1,

have h3 : ad (ad c a (ad c a (ad b a c))) a a, from ad4 h2,

show ad c a (ad c a (ad b a c)), from ad1 h1 h3

• ad27

theorem ad27 {a b c d e : Prop} (h1 : ad (ad a b c) d e) : ad (ad a d e) b c :=

have h2 : (ad a d e) or (ad a b c), from ad10 h1,

have h3 : (ad a b c) or (ad a d e), from ad13 h2,

show ad (ad a d e) b c, from ad11 h3

• ad′6

theorem ad6’ {a b : Prop} (h1 : a) : a or b :=

ad6 h1
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• adad
1

theorem ad1_ad {a b c d e : Prop} (h1 : ad c d e) (h2 : ad (ad a b c) d e) : ad a d e :=

have h3 : (ad (ad a b c) d e) → ((ad a d e) or (ad a b c)), from ad10,

have h4 : ad a d e → ad a d e, from R,

have h5 : ad c d e → ad a b c → ad a d e, from ad9,

have h6 : ad c d e → ad a d e → ad a d e, from M1 h4,

have h7 : ad c d e → ((ad a d e) or (ad a b c)) → ad a d e, from δ_or2 h6 h5,

have h8 : ad c d e → (ad (ad a b c) d e) → ((ad a d e) or (ad a b c)), from M1 h3,

show ad a d e, from (T2 h8 h7) h1 h2

• adad
2

theorem ad2_ad {a b c d e : Prop} (h1 : ad a d e) : ad (ad (ad c a b) a c) d e :=

let b’ := ad c a b in

have h2 : (ad a d e) → (((ad c a c) or b’) or ((ad c d e) or b’)),

from (assume h, ad20 $ ad13 $ ad20 $ ad10 $ ad8 $ ad13 $ ad6’ h),

have h3 : ((ad c a c) or b’) → ((ad b’ d e) or (ad b’ a c)),

from (assume h, ad13 $ ad6’ $ ad11 h),

have h4 : ((ad c d e) or b’) → ((ad b’ d e) or (ad b’ a c)),

from (assume h, ad6’ $ ad11 h),

have h5 : (((ad c a c) or b’) or ((ad c d e) or b’)) → ((ad b’ d e) or (ad b’ a c)),

from δ_or1 h3 h4,

have h6 : ad a d e → ((ad b’ d e) or (ad b’ a c)),

from T1 h2 h5,

show ad (ad b’ a c) d e,

from ad11 (h6 h1)

• adad
3

theorem ad3_ad {a b c d e f g h : Prop} (h1 : ad (ad a b c) g h) :

ad (ad (ad (ad (ad f a d) a (ad e a d)) a (ad (ad f a e) a d)) b c) g h :=

let j := ad (ad f a d) a (ad e a d), k := ad (ad f a e) a d, i := ad j a k in

have h2 : (ad (ad a b c) g h) → ((ad a g h) or (ad a b c)),

from ad10,

have h3 : ad a g h → ad (ad i b c) g h,

from (assume h31, ad11 $ ad6’ $ ad3 h31),

have h4 : ad a b c → ad (ad i b c) g h,

from (assume h41, ad6 $ ad3 h41),

have h5 : ((ad a g h) or (ad a b c)) → ad (ad i b c) g h,

from (δ_or1 h3 h4),

(T1 h2 h5) h1
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• adad
4

theorem ad4_ad {a b c d e f g : Prop} (h1 : ad (ad a b c) f g) :

ad (ad (ad d a (ad d a (ad e a d))) b c) f g :=

let h := ad d a (ad d a (ad e a d)) in

have h2 : (ad (ad a b c) f g) → ((ad a f g) or (ad a b c)),

from ad10,

have h3 : ad a f g → ad (ad h b c) f g,

from (assume h31, ad11 $ ad6’ $ ad4 h31),

have h4 : ad a b c → ad (ad h b c) f g,

from (assume h41, ad6 $ ad4 h41),

have h5 : ((ad a f g) or (ad a b c)) → ad (ad h b c) f g,

from δ_or1 h3 h4,

(T1 h2 h5) h1

• adad
5

theorem ad5_ad {a b c d e : Prop} (h1 : ad (ad a b c) d e) : ad (b or a) d e :=

have h2 : ad (ad a b c) d e → ((ad a d e) or (ad a b c)),

from ad10,

have h3 : (ad a d e) → (ad (b or a) d e),

from (assume h, ad8 $ ad13 $ ad6’ h),

have h4 : (ad a b c) → (ad (b or a) d e),

from (assume h, ad6 $ ad5 h),

have h5 : ((ad a d e) or (ad a b c)) → (ad (b or a) d e),

from δ_or1 h3 h4,

(T1 h2 h5) h1

• adad
6

theorem ad6_ad {a b c d e : Prop} (h1 : ad a d e) : ad (ad a b c) d e :=

ad11 $ ad6’ h1

• adad
7

theorem ad7_ad {a b c d e f : Prop} (h1 : ad (ad (c or d) a b) e f) :

ad ((ad c a b) or (ad d a b)) e f :=

have h2 : ad (ad (c or d) a b) e f → ((ad (c or d) e f) or (ad (c or d) a b)),

from ad10,
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have h3 : ad (c or d) e f → ((ad c e f) or (ad d e f)),

from ad7,

have h4 : ad c e f → ad ((ad c a b) or (ad d a b)) e f,

from (assume h, ad8 $ ad6’ $ ad11 $ ad6’ h),

have h5 : ad d e f → ad ((ad c a b) or (ad d a b)) e f,

from (assume h, ad8 $ ad13 $ ad6’ $ ad11 $ ad6’ h),

have h6 : ((ad c e f) or (ad d e f)) → ad ((ad c a b) or (ad d a b)) e f,

from δ_or1 h4 h5,

have h7 : ad (c or d) e f → ad ((ad c a b) or (ad d a b)) e f,

from T1 h3 h6,

have h8 : ad (c or d) a b → ad ((ad c a b) or (ad d a b)) e f,

from (assume h, ad6 $ ad7 h),

have h9 : ((ad (c or d) e f) or (ad (c or d) a b)) → ad ((ad c a b) or (ad d a b)) e f,

from δ_or1 h7 h8,

(T1 h2 h9) h1

• adad
12

theorem ad12_ad {a b c: Prop} (h1 : ad (a or a) b c) : ad a b c :=

ad12 $ ad7 h1

• adad
13

theorem ad13_ad {a b c d : Prop} (h1 : ad (a or b) c d) : ad (b or a) c d :=

ad8 $ ad13 $ ad7 h1

• adad
14

theorem ad14_ad {a b c d e : Prop} (h1 : ad (a or (b or c)) d e) : ad ((a or b) or c) d e :=

ad8 $ ad13 $ ad22 $ ad13 $ ad14 $ ad21 $ ad7 h1

• ad′8

theorem ad8’ {a b c d e f : Prop} (h1 : ad (ad c a b) e f) : ad (ad (c or d) a b) e f :=

have h2 : (ad (ad c a b) e f) → ((ad c e f) or (ad c a b)), from ad10,

have h3 : (ad c e f) → (ad (ad (c or d) a b) e f), from (assume h, ad27 $ ad6 $ ad6_ad h),

have h4 : (ad c a b) → (ad (ad (c or d) a b) e f), from (assume h, ad6 $ ad6_ad h),

have h5 : ((ad c e f) or (ad c a b)) → (ad (ad (c or d) a b) e f), from δ_or1 h3 h4,

show ad (ad (c or d) a b) e f, from (T1 h2 h5) h1
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• ad′′8

theorem ad8’’ {a b c d e f : Prop} (h1 : ad (ad (c or d) a b) e f) : ad (ad (d or c) a b) e f :=

have h31 : (ad (ad (c or d) a b) e f) → ((ad (c or d) e f) or (ad (c or d) a b)),

from ad10,

have h32 : ad (c or d) e f → ad (ad (d or c) a b) e f,

from (assume h, ad27 $ ad6 $ ad13_ad h),

have h33 : ad (c or d) a b → ad (ad (d or c) a b) e f,

from (assume h, ad6 $ ad13_ad h),

have h34 : ((ad (c or d) e f) or (ad (c or d) a b)) → ad (ad (d or c) a b) e f,

from δ_or1 h32 h33,

(T1 h31 h34) h1

• adad
8

theorem ad8_ad {a b c d e f : Prop} (h1 : ad ((ad c a b) or (ad d a b)) e f) :

ad (ad (c or d) a b) e f :=

have h2 : ad ((ad c a b) or (ad d a b)) e f → ((ad (ad c a b) e f) or (ad (ad d a b) e f)),

from ad7,

have h3 : ad (ad c a b) e f → ad (ad (c or d) a b) e f,

from ad8’,

have h4 : ad (ad d a b) e f → ad (ad (c or d) a b) e f,

from (assume h, ad8’’ $ ad8’ h),

have h5 : ((ad (ad c a b) e f) or (ad (ad d a b) e f)) → ad (ad (c or d) a b) e f,

from δ_or1 h3 h4,

(T1 h2 h5) h1

• adad
9

theorem ad9_ad {a b c d e f g : Prop} (h1 : ad (ad a b c) f g) (h2 : ad (ad d e a) f g) :

ad (ad d b c) f g :=

let g’ := ad d f g, c’ := ad d b c in

have h3 : ad (ad a b c) f g → ((ad a f g) or (ad a b c)),

from ad10,

have h4 : ad (ad d e a) f g → (g’ or (ad d e a)),

from ad10,

have h5 : ad a b c → ad d f g → (g’ or c’),

from M1 ad6’,

have h6 : ad a b c → ad d e a → (g’ or c’),

from (assume h, assume i, ad13 $ ad6’ $ ad9 h i),

have h7 : ad a f g → ad d f g → (g’ or c’),

from M1 ad6’,
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have h8 : ad a f g → ad d e a → (g’ or c’),

from (assume h, assume i, ad6’ $ ad9 h i),

have h9 : (g’ or (ad d e a)) → ad a b c → (g’ or c’),

from flip (δ_or2 h5 h6),

have h10 : (g’ or (ad d e a)) → ad a f g → (g’ or c’),

from flip (δ_or2 h7 h8),

have h11 : (g’ or (ad d e a)) → ((ad a f g) or (ad a b c)) → (g’ or c’),

from δ_or2 h10 h9,

have h12 : (ad (ad a b c) f g) → (g’ or (ad d e a)) → (g’ or c’),

from flip (T2 (M1 h3) h11),

have h13 : (ad (ad a b c) f g) → (ad (ad d e a) f g) → (g’ or c’),

from T2 (M1 h4) h12,

ad11 (h13 h1 h2)

• adad
10

theorem ad10_ad {a b c d e f g : Prop} (h1 : ad (ad (ad e d c) a b) f g)

: ad ((ad e a b) or (ad e d c)) f g :=

have h2 : ad (ad (ad e d c) a b) f g → ((ad (ad e d c) f g) or (ad (ad e d c) a b)),

from ad10,

have h3 : ad (ad e d c) f g → ad ((ad e a b) or (ad e d c)) f g,

from (assume h, ad8 $ ad13 $ ad6’ h),

have h4 : ad (ad e d c) a b → ad ((ad e a b) or (ad e d c)) f g,

from (assume h, ad6 $ ad10 h),

have h5 : ((ad (ad e d c) f g) or (ad (ad e d c) a b)) → ad ((ad e a b) or (ad e d c)) f g,

from δ_or1 h3 h4,

(T1 h2 h5) h1

• adad
11

theorem ad11_ad {a b c d e f g : Prop} (h1 : ad ((ad e a b) or (ad e d c)) f g)

: ad (ad (ad e d c) a b) f g :=

have h2 : ad ((ad e a b) or (ad e d c)) f g → ((ad (ad e a b) f g) or (ad (ad e d c) f g)),

from ad7,

have h3 : ad (ad e a b) f g → ((ad e f g) or (ad e a b)),

from ad10,

have h4 : ad e f g → ((ad e f g) or (ad e d c)),

from ad6’,

have h5 : ((ad e f g) or (ad e d c)) → ad (ad (ad e d c) a b) f g,

from (assume h, ad11 $ ad13 $ ad10 $ ad6 $ ad11 h),

have h6 : ad e f g → ad (ad (ad e d c) a b) f g,

from T1 h4 h5,
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have h7 : ((ad e a b) or (ad e d c)) → ad (ad (ad e d c) a b) f g,

from (assume h, ad6 $ ad11 h),

have h8 : ad e a b → ((ad e a b) or (ad e d c)),

from ad6’,

have h9 : ad e a b → ad (ad (ad e d c) a b) f g,

from T1 h8 h7,

have h10 : ((ad e f g) or (ad e a b)) → ad (ad (ad e d c) a b) f g,

from δ_or1 h6 h9,

have h11 : ad (ad e a b) f g → ad (ad (ad e d c) a b) f g,

from T1 h3 h10,

have h12 : ad (ad e d c) f g → ad (ad (ad e d c) a b) f g,

from (assume h, ad27 $ ad6 $ ad11 $ ad10 h),

have h13 : ((ad (ad e a b) f g) or (ad (ad e d c) f g)) → ad (ad (ad e d c) a b) f g,

from δ_or1 h11 h12,

(T1 h2 h13) h1

Lemma 4.7.4. Where ∨ := ∨ad, the following property holds:

if A ∨ B ∈ Γ+ then A ∈ Γ+ or B ∈ Γ+

Proof. By Lemma 4.7.2, properties m∨ and δ∨ hold in the present calculus, and they,

together with the rules of B∨, represented in Bad by ad′6, ad12, ad13 and ad14, imply the

desired property (see the proof of Theorem 4.5.6).

Lemma 4.7.5. Let ∨ := ∨ad. If the rule

ad(A1,D,E) . . . ad(An,D,E)

ad(B,D,E)
rad

is derivable in Bad, then the rule r∨,ad, given by

ad(C ∨ A1,D,E) . . . ad(C ∨ An,D,E)

ad(C ∨ B,D,E)
r∨,ad

is also derivable.

Proof. Let r be non-nullary rule given schematically by (r) A1, . . . ,An/B and define R :=

ad(C,D,E). Suppose that rad holds in Bad, given by (rad) P1, . . . ,Pn/ad(B,D,E), where

Pi = ad(Ai,D,E), thus Π := {Pi | 1 ≤ i ≤ n} `Bad
ad(B,D,E). By Lemma 4.7.2 and
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Lemma 4.5.4, we have (a): Π∨ `Bad
R ∨ ad(B,D,E), where Π∨ := {R ∨ P | P ∈ Π}. Let

Qi = ad(C∨Ai,D,E) and Θ := {Qi | 1 ≤ i ≤ n}, which represent precisely the premisses

of the rule whose derivability we want to prove. By rule ad7, we have (b): Θ `Bad
S, for

each S ∈ Π∨. Hence, from (a) and (b), by (T), Θ `Bad
R∨ ad(B,D,E), which, by rule ad8

and (T), gives Θ `Bad
ad(C ∨ B,D,E), the desired result.

Corollary 4.7.5.1. The rules adad
15, . . . , adad

25 are derivable in Bad.

Proof. Because the rules ad15, . . . , ad25 are respectively the rules ad∨1 , . . . , ad∨11, and rules

adad
j , for 1 ≤ j ≤ 11, were seen to be derivable in Lemma 4.7.3, we note that Lemma 4.7.5

implies that the rules (ad∨j )
ad are also derivable.

Lemma 4.7.6. The following property holds for `Bad
:

for all Γ ∪ {A,B,C,D} ⊆ Lad. if Γ,B,C `Bad
A then Γ,B `Bad

ad(A,B,C) (δad)

Proof. Let Γ ∪ {A,B,C} ⊆ Lad and suppose that Γ,B,C `Bad
A, witnessed by a deduc-

tion A1, . . . ,An = A. Consider the property P (j) meaning the consecution Γ,B `Bad

ad(Aj,B,C). We will prove by induction on this derivation that P (j) holds for all

1 ≤ j ≤ n, then, in particular, it will hold for n, which is precisely the desired result. For

the base case, there are three possibilities: (a) A1 ∈ Γ, (b) A1 = B or (c) A1 = C. In case

of (a), Γ,B `Bad
A1, and, by rule ad6, Γ,B `Bad

ad(A1,B,C). In case of (b), Γ,B `Bad
B,

by (R) and (M), hence, by rule ad6, Γ,B `Bad
ad(B,B,C). Now, to complete the base case,

in case of (c), use Γ,B `Bad
B and rule ad6 to get Γ,B `Bad

ad(B,C,B), then rule ad13 to

get Γ,B `Bad
ad(C,B,C), the desired result since A1 = C.

For the inductive step, suppose that P (i) holds for all 1 ≤ i < k, where k > 1.

Then, the same cases considered in the base case apply for Ak and are proved in the

same way, together with the case in which Ak results from the application of an instance

〈Ak1 , . . . ,Akm ,Ak〉, with 1 ≤ kl < k and 1 ≤ l ≤ m, of some of the primitive rules

of Bad, say ads, some 1 ≤ s ≤ 25. By the induction hypothesis, the following assertions

hold: Γ,B `Bad
ad(Ak1 ,B,C), . . ., Γ,B `Bad

ad(Akm ,B,C). Since the lifted version adad
s is

derivable, by Lemma 4.7.3 and Corollary 4.7.5.1, an application of it to ad(Ak1 ,B,C),. . .,

ad(Akm ,B,C) allows us to derive ad(Ak,B,C) from Γ ∪ {B}.

Lemma 4.7.7. Every set Γ+ that is Z-maximal with respect to `Bad
is maximal (consis-

tent).

Proof. Suppose that Γ+ is Z-maximal and assume that A 6∈ Γ+. The goal is to prove

that Γ,A `Bad
B for every B ∈ Lad. Let C ∈ Γ+ (Lemma 2.6.2 guarantees that Γ+ is
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nonempty). An important fact in this proof is that Γ+ `Bad
ad(B,C,Z). To prove it,

assume that Γ+ 6`Bad
ad(B,C,Z), in order to derive the contradiction Γ+ `Bad

Z by the

following reasoning:

(1) Γ+, ad(B,C,Z) `Bad
Z Lemma 2.6.1.1

(2) Γ+,C, ad(B,C,Z) `Bad
Z 1 (M)

(3) Γ+,C `Bad
ad(Z,C, ad(B,C,Z)) δad

(4) C `Bad
C (R)

(5) Γ+,C `Bad
C 4 (M)

(6) Γ+,C `Bad
ad(Z,C, ad(Z,C, ad(B,C,Z))) 5 ad′4

(7) Γ+,C `Bad
Z 3, 6 ad1

(8) Γ+ `Bad
Z 7 C ∈ Γ+

Because Γ+ `Bad
ad(B,C,Z), we get (a): Γ+,A `Bad

ad(B,C,Z) by (M). Since A 6∈ Γ+,

we also have (b): Γ+,A `Bad
Z. Then these consecutions, by ad1, yield Γ+,A `Bad

B,

proving that Γ+ is maximal.

Theorem 4.7.8. The calculus Bad is complete with respect to the matrix 2ad.

Proof. Let Γ ∪ {Z} ⊆ Lad such that Γ 6`Bad
Z and take a Z-maximal theory Γ+ ⊇ Γ

by Lindenbaum-Asser Lemma. From the truth-table of ad and the formulation given in

Section 2.7, the completeness property (ad) is given by:

ad(A,B,C) ∈ Γ+ iff A ∈ Γ+ or (B ∈ Γ+ and C 6∈ Γ+) (ad)

In the left to right direction, suppose that ad(A,B,C) ∈ Γ+, thus (a): Γ+ `Bad

ad(A,B,C). Then, by rule ad5 and (T), Γ+ `Bad
ad(B,A,B), which, by Lemma 4.7.4,

implies Γ+ `Bad
A or Γ+ `Bad

B. We proceed by considering the cases regarding the

derivability of A from Γ+. In case Γ+ `Bad
A, there is nothing to be done. Otherwise,

if Γ+ 6`Bad
A, we have Γ+ `Bad

B because of the lemma just mentioned. For the sake of

contradiction, suppose that C ∈ Γ+, thus (b): Γ+ `Bad
C. From (a) and (b), by ad1, we get

Γ+ `Bad
A, contradicting the assumption that Γ+ 6`Bad

A. Therefore C 6∈ Γ+, as desired.

From right-to-left, in case A ∈ Γ+, Γ+ `Bad
A. From this, by rule ad6 and (T), we

have Γ+ `Bad
ad(A,B,C). In case B ∈ Γ+ and C 6∈ Γ+, because Γ+ is also maximal

(Lemma 4.7.7), Γ+,B,C `Bad
A, which, by the deduction theorem δad, leads to Γ+,B `Bad

ad(A,B,C) and thus to Γ+ `Bad
ad(A,B,C), since B ∈ Γ+ by assumption.
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The expansion Bad,> axiomatized by the calculus below, in view of Corollary 2.8.4.1:

Hilbert Calculus 21. Bad,>

Bad B>

4.8 B¬, B¬,>

The axiomatization here presented for B¬, the fragment of pure classical negation,

uses the rule of explosion, denoted by n1, and the rules for double negation introduction

and elimination:

Hilbert Calculus 22. B¬

A ¬A
B

n1
A
¬¬A

n2
¬¬A

A
n3

Theorem 4.8.1. The calculus B¬ is sound with respect to the matrix 2¬.

Proof. Let v be an arbitrary 2¬-valuation. By the interpretation of ¬ in 2¬, the premisses

of n1 can not be simultaneously evaluated to 1. Soundness of rules n2 and n3 follows by

the involutive characteristic of ¬2¬ , that is, the fact that ¬2¬(¬2¬(x)) = x.

We now intend to prove a deduction theorem for negation, which will have as con-

sequence the completeness result for the calculus B¬ with respect to the pure negation

fragment. For that, we first prove a lemma regarding the structure of the formulas in a

derivation in the calculus under discussion. This result will then be used to prove the

desired theorem.

Lemma 4.8.2. Let B1, . . . ,Bn = B be a derivation of B from Γ. If the rule n1 was not

applied to obtain any of the formulas B1, . . . ,Bk, with 1 ≤ k ≤ n, then each Bj, for

1 ≤ j ≤ k, has the form ¬2n+cC, where ¬2m+cC ∈ Γ, c ∈ {0, 1}, C is not ¬-headed, and
m,n ∈ ω.

Proof. Let 1 ≤ k ≤ n, and suppose that the rule n1 was not applied to derive any of the

formulas Bj in the derivation of B from Γ, where 1 ≤ j ≤ k. The proof goes by induction on
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j, considering P (j) given by the statement “Bj has the form ¬2n+cC, for some ¬2m+cC ∈ Γ,

where c ∈ {0, 1}, C not ¬-headed and m,n ∈ ω”. The base case, when j = 1, presupposes

checking only the case when B1 ∈ Γ, since this calculus contains no axioms. Then, if

B1 ∈ Γ, the property follows because any formula in a language whose signature has ¬
as unary symbol has the form ¬2m+cC, for some non-¬-headed formula C, c ∈ {0, 1} and
m ∈ ω. Now, suppose that the claim holds for all Bi, with i < j. In case Bj ∈ Γ, the same

argument used in the base case is applicable. Otherwise, Bj follows either from n2 or n3

applied to Bi1 , with i1 < j. By the induction hypothesis, Bi1 = ¬2n1+c1C ∈ Γ for some

non-¬-headed formula C, n1 ∈ ω and c1 ∈ {0, 1}. In the first case, Bj has the form ¬¬Bi1 ,

as a result of the application of rule n2, thus Bj = ¬2n1+2+c1C = ¬2(n1+1)+c1C = ¬2n′
1+c1C,

with n′1 ∈ ω. In the second case, Bj is a formula D, as a result of rule n3 applied to

Bi1 = ¬¬D. This forces n1 to be strictly positive, since c1 ∈ {0, 1}. This fact implies that

Bj = ¬2n1+c1−2C = ¬2(n1−1)+c1C = ¬2n′
1+c1C, where n′1 ∈ ω necessarily.

Theorem 4.8.3. The following property holds for `B¬:

for all Γ ∪ {B} ⊆ L¬.if Γ,¬B `B¬ B then Γ `B¬ B (δ¬)

Proof. Let Γ ∪ {B} ⊆ L¬. Suppose that Γ,¬B `B¬ B and that this is witnessed by

the deduction B1, . . . ,Bn = B. Notice that, if the rule n1 was not applied in this entire

derivation, then Lemma 4.8.2 guarantees that B = ¬2n+cC, where B′ = ¬2m+cC ∈ Γ, C

is not ¬-headed, m,n ∈ ω and c ∈ {0, 1}. In this case, there are three cases to consider:

if m = n, then B = B′ ∈ Γ, thus Γ `B¬ B; if m < n, then perform consecutive n − m
applications of rule n2 starting from B′, deriving B; finally, if m > n, do the same as the

latter case, but with m− n applications of rule n3.

Now, suppose that the rule n1 was applied for the first time in step k, where k ≥ 3,

resulting in the formula Bk. In this case, there are formulas Bk1 and Bk2 , where k1, k2 < k,

such that (a): Bk2 = ¬Bk1 . Because of Lemma 4.8.2, (b): Bk1 = ¬2n1+c1C1 and (c):

Bk2 = ¬2n2+c2C2, where (d): ¬2m1+c1C1 ∈ Γ and (e): ¬2m2+c2C2 ∈ Γ, C1 and C2 are not ¬-
headed, c1, c2 ∈ {0, 1} and n1,m1, n2,m2 ∈ ω. The facts (a), (b) and (c) force C1 = C2 and

establish that 2n2 + c2 = 2n1 + c1 + 1. The latter implies c1 6= c2, otherwise 2n2 = 2n1 + 1,

an absurd. Without loss of generality, take c1 = 0 and c2 = 1, then, from (d) and (e),

¬2m1C1 ∈ Γ and ¬2m2+1C2 = ¬2m2+1C1 ∈ Γ. Hence, by m1 consecutive applications of rule

n3 starting from ¬2m1C1, we derive C1 from Γ. Similarly, with m2 consecutive applications

of this same rule starting from ¬2m2+1C1, we get ¬C1 from Γ. These two derivations are

enough ingredients to produce B from Γ by rule n1, which is the desired result.
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Theorem 4.8.4. The calculus B¬ is complete with respect to the matrix 2¬.

Proof. Let Γ∪{Z} ⊆ L¬. Consider Γ+ ⊇ Γ a Z-maximal set and the completeness property

for ¬ presented below, obtained following the procedure described in Section 2.7:

¬A ∈ Γ+ iff A 6∈ Γ+. (¬)

To prove this property, from the left to the right, we work by contradiction, so suppose that

¬A ∈ Γ+ and A ∈ Γ+. Since Γ+ is deductively closed (see Corollary 2.6.1.2), Γ+ `B¬ A and

Γ+ `B¬ ¬A. Then, by an appeal to n1, Γ+ `B¬ Z, contradicting the fact that Γ+ 6`B¬ Z.

From the right to the left, again by contradiction, suppose that A 6∈ Γ+ and ¬A 6∈ Γ+.

Then, by Theorem 2.6.1, (a): Γ+,A `B¬ Z and (b): Γ+,¬A `B¬ Z. Finally, the following

reasoning produces the absurd Γ+ `B¬ Z:

(1) Γ+,¬A `B¬ Z (a)

(2) ¬Z, ϕ `B¬ A n1

(3) Γ+,¬Z,¬A `B¬ A 1, 2 (T)

(4) Γ+,¬Z `B¬ A 3 Theorem 4.8.3

(5) Γ+,A `B¬ Z (b)

(6) Γ+,¬Z `B¬ ϕ 4, 5 (T)

(7) Γ+ `B¬ Z 6 Theorem 4.8.3

We finish this section with the calculus for the expansion B¬,>, which is, as usual,

axiomatized by adding the rule t1 (see Corollary 2.8.4.1):

Hilbert Calculus 23. B¬,>

B¬ B>

In order to keep the deduction theorem and, consequently, the completeness property

for negation, we just need a slight modification in the statement of Lemma 4.8.2: instead

of “¬2m+cC ∈ Γ”, we would write “Γ `B¬,> ¬2m+cC”, something that leads to small

modifications in the proof of Theorem 4.8.3. The proof of the modified version of the

referred lemma is very similar to the proof of the original one.
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4.9 Bpt,Bpt,⊥,Bpt,>,Bpt,⊥,>

The classical connective pt may be defined from those in B by means of the translation

t(pt) = λp, q, r.p + (q + r), where + = λp, q.(p ∧ ¬q) ∨ (q ∧ ¬p). Notice that the induced

interpretation pt2 is such that pt2(x, y, z) = 1 if and only if either x = y = z = 1 or exactly

one of the elements x, y and z is 1, what characterizes it as a linear boolean function. The

candidate axiomatization for the fragment Bpt is presented below and clearly reflects the

behaviour of pt2 . The proof of soundness is presented right after it.

Hilbert Calculus 24. Bpt

A B C
pt(A,B,C)

pt1
pt(A,B,C)

pt(B,A,C)
pt2

pt(A,B,C)

pt(A,C,B)
pt3

A
pt(A,B,B)

pt4
pt(A,B,B)

A
pt5

pt(A,B, pt(C,D,E))

pt(pt(A,B,C),D,E)
pt6

Theorem 4.9.1. The calculus Bpt is sound with respect to the matrix 2pt.

Proof. Let v be an arbitrary 2pt-valuation. For rule pt1, if v(A) = 1, v(B) = 1 and

v(C) = 1, then v(pt(A,B,C)) = 1. For rules pt2 and pt3, if v(pt(A,B,C)) = 1, then either

all components all assigned the value 1 or only one of them is assigned 1. In any case,

permuting the order in which they occur in the compound does not its value under v.

For rule pt4, if v(A) = 1, consider two cases: either v(B) = 1 or v(B) = 0; the former

implies that all of subformulas of pt(A,B,B) are assigned the value 1 and the latter implies

that only one subformula is assigned the value 1, so v(pt(A,B,B)) = 1. The argument is

analogous to for pt5. Finally, for rule pt6, if v assigns 0 to pt(pt(A,B,C),D,E), consider

the following cases:

• if v(pt(A,B,C)) = 0, v(D) = 0 and v(E) = 0, we have these subcases:

– if v(A) = 0, v(B) = 0 and v(C) = 0, then v assigns necessarily 0 to the premiss;

– if v(A) = 1 and v(B) = 1 but v(C) = 0, then v(pt(C,D,E)) = 0; and

– if v(A) = 0 and v(B) = 1 but v(C) = 1, or v(A) = 1 and v(B) = 0 but

v(C) = 1, then v(pt(C,D,E)) = 1, causing v to assign 0 to the premiss.

• if v(pt(A,B,C)) = 1, v(D) = 1 and v(E) = 0, we have these subcases:
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– if v(A) = 1, v(B) = 1 and v(C) = 1, then the premiss gets the value 0

immediately;

– if v(A) = 1, v(B) = 0 and v(C) = 0, then v(pt(C,D,E)) = 1, causing v to give

the value 0 to the premiss;

– if v(A) = 0, v(B) = 1 and v(C) = 0, the argument is analogous to the previous

case;

– if v(A) = 0, v(B) = 0 and v(C) = 1, since v(C) = 1 and v(D) = 1,

v(pt(C,D,E)) = 0, and the premiss get the value 0.

• The remaining cases go analogously as the previous case-by-case analysis.

In what follows, if r is an n-ary rule, with n ∈ ω, let rpt, the pt-lifted version of r, be

the rule given by the set of instances 〈pt(C,D,A1), . . . , pt(C,D,An), pt(C,D,B)〉, where
〈A1, . . . ,An,B〉 is an instance of r and C,D ∈ Lpt. We proceed by deriving some rules in

Bpt. Some of them are the pt-lifted versions of the primitive rules, while the others will

simplify the proofs of important properties in the path to the completeness result.

Lemma 4.9.2. The following rules are derivable in Bpt:

pt(pt(A,B,C),D,E)

pt(A,B, pt(C,D,E))
pt7

pt(D,E, pt(A,B,C))

pt(D,E, pt(B,A,C))
ptpt2

pt(D,E, pt(A,B,C))

pt(D,E, pt(A,C,B))
ptpt3

pt(C,D,A)

pt(C,D, pt(A,B,B))
ptpt4

pt(C,D, pt(A,B,B))

pt(C,D,A)
ptpt5

pt(F,G, pt(A,B, pt(C,D,E)))

pt(F,G, pt(pt(A,B,C),D,E))
ptpt6

pt(pt(A,B,C),A,B)

C
pt8

pt(pt(A,B,C),A,C)

B
pt9

pt(pt(A,B,C),B,C)

A
pt10
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pt(E,F, pt(pt(A,B,C),C,D))

pt(E,F, pt(A,B,D))
pt′11

pt(E,F, pt(pt(A,B,C),B,D))

pt(E,F, pt(A,C,D))
pt′′11

pt(E,F, pt(pt(A,B,C),A,D))

pt(E,F, pt(B,C,D))
pt′′′11

pt(pt(pt(A,B,C),A,D), pt(pt(A,B,C),B,D), pt(pt(A,B,C),C,D))

D
pt11

pt(A,B,C) D E

pt(A,B, pt(C,D,E))
pt12

pt(A,B,C) pt(A,B,D) E

pt(C,D,E)
pt13

pt(A,B,C) pt(A,B,D) pt(A,B,E)

pt(A,B, pt(C,D,E))
pt14

A
pt(pt(A,B,C),B,C)

pt′4

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• pt7

theorem pt7 {a b c d e : Prop} (h1 : pt (pt a b c) d e) : pt a b (pt c d e) :=

have h2 : pt d (pt a b c) e, from pt2 h1,

have h3 : pt d e (pt a b c), from pt3 h2,

have h4 : pt (pt d e a) b c, from pt6 h3,

have h5 : pt b (pt d e a) c, from pt2 h4,

have h6 : pt b c (pt d e a), from pt3 h5,

have h7 : pt (pt b c d) e a, from pt6 h6,

have h8 : pt e (pt b c d) a, from pt2 h7,

have h9 : pt e a (pt b c d), from pt3 h8,

have h10 : pt (pt e a b) c d, from pt6 h9,

have h11 : pt c (pt e a b) d, from pt2 h10,

have h12 : pt c d (pt e a b), from pt3 h11,

have h13 : pt (pt c d e) a b, from pt6 h12,

have h14 : pt a (pt c d e) b, from pt2 h13,

show pt a b (pt c d e), from pt3 h14

• ptpt2

theorem pt2_pt {a b c d e : Prop} (h1 : pt d e (pt a b c)) : pt d e (pt b a c) :=



96

have h2 : pt d (pt a b c) e, from pt3 h1,

have h3 : pt (pt a b c) d e, from pt2 h2,

have h4 : pt a b (pt c d e), from pt7 h3,

have h5 : pt b a (pt c d e), from pt2 h4,

have h6 : pt (pt b a c) d e, from pt6 h5,

have h7 : pt d (pt b a c) e, from pt2 h6,

show pt d e (pt b a c), from pt3 h7

• ptpt3

theorem pt3_pt {a b c d e : Prop} (h1 : pt d e (pt a b c)) : pt d e (pt a c b) :=

have h2 : pt (pt d e a) b c, from pt6 h1,

have h3 : pt (pt d e a) c b, from pt3 h2,

show pt d e (pt a c b), from pt7 h3

• ptpt4

theorem pt4_pt {a b c d : Prop} (h1 : pt c d a) : pt c d (pt a b b) :=

have h2 : pt (pt c d a) b b, from pt4 h1,

show pt c d (pt a b b), from pt7 h2

• ptpt5

theorem pt5_pt {a b c d : Prop} (h1 : pt c d (pt a b b)) : pt c d a :=

have h2 : pt (pt c d a) b b, from pt6 h1,

show pt c d a, from pt5 h2

• ptpt6

theorem pt6_pt {a b c d e f g : Prop}

(h1 : pt f g (pt a b (pt c d e)))

: pt f g (pt (pt a b c) d e) :=

have h2 : pt (pt a b (pt c d e)) f g, from pt2 (pt3 h1),

have h3 : pt a b (pt (pt c d e) f g), from pt7 h2,

have h4 : pt (pt (pt c d e) f g) a b, from pt2 (pt3 h3),

have h5 : pt (pt c d e) f (pt g a b), from pt7 h4,

have h6 : pt c d (pt e f (pt g a b)), from pt7 h5,

have h7 : pt (pt e f (pt g a b)) c d, from pt2 (pt3 h6),

have h8 : pt e f (pt (pt g a b) c d), from pt7 h7,

have h9 : pt (pt (pt g a b) c d) e f, from pt2 (pt3 h8),
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have h10 : pt (pt g a b) c (pt d e f), from pt7 h9,

have h11 : pt g a (pt b c (pt d e f)), from pt7 h10,

have h12 : pt (pt b c (pt d e f)) g a, from pt2 (pt3 h11),

have h13 : pt b c (pt (pt d e f) g a), from pt7 h12,

have h14 : pt (pt (pt d e f) g a) b c, from pt2 (pt3 h13),

have h15 : pt (pt d e f) g (pt a b c), from pt7 h14,

have h16 : pt d e (pt f g (pt a b c)), from pt7 h15,

have h17 : pt (pt f g (pt a b c)) d e, from pt2 (pt3 h16),

show pt f g (pt (pt a b c) d e), from pt7 h17

• pt8

theorem pt8 {a b c : Prop} (h1 : pt (pt a b c) a b) : c :=

have h2 : pt a (pt a b c) b, from pt2 h1,

have h3 : pt a b (pt a b c), from pt3 h2,

have h4 : pt a b (pt a c b), from pt3_pt h3,

have h5 : pt a b (pt c a b), from pt2_pt h4,

have h6 : pt a (pt c a b) b, from pt3 h5,

have h7 : pt (pt c a b) a b, from pt2 h6,

have h8 : pt c a (pt b a b), from pt7 h7,

have h9 : pt c a (pt a b b), from pt2_pt h8,

have h10 : pt c a a, from pt5_pt h9,

show c, from pt5 h10

• pt9

theorem pt9 {a b c : Prop} (h1 : pt (pt a b c) a c) : b :=

have h2 : pt a b (pt c a c), from pt7 h1,

have h3 : pt a b (pt a c c), from pt2_pt h2,

have h4 : pt a b a, from pt5_pt h3,

have h5 : pt b a a, from pt2 h4,

show b, from pt5 h5

• pt10

theorem pt10 {a b c : Prop} (h1 : pt (pt a b c) b c) : a :=

have h2 : pt a b (pt c b c), from pt7 h1,

have h3 : pt a b (pt b c c), from pt2_pt h2,

have h4 : pt a b b, from pt5_pt h3,

show a, from pt5 h4



98

• pt′11

lemma pt11’ {a b c d e f : Prop} (h1 : pt e f (pt (pt a b c) c d))

: pt e f (pt a b d) :=

have h2 : pt e f (pt c d (pt a b c)), from pt3_pt (pt2_pt h1),

have h3 : pt e f (pt (pt c d a) b c), from pt6_pt h2,

have h4 : pt e f (pt b c (pt c d a)), from pt3_pt (pt2_pt h3),

have h5 : pt e f (pt (pt b c c) d a), from pt6_pt h4,

have h6 : pt e f (pt d a (pt b c c)), from pt3_pt (pt2_pt h5),

have h7 : pt e f (pt (pt d a b) c c), from pt6_pt h6,

have h8 : pt e f (pt d a b), from pt5_pt h7,

show pt e f (pt a b d), from pt3_pt (pt2_pt h8)

• pt′′11

lemma pt11’’ {a b c d e f : Prop} (h1 : pt e f (pt (pt a b c) b d))

: pt e f (pt a c d) :=

have h2 : pt e f (pt b d (pt a b c)), from pt3_pt (pt2_pt h1),

have h3 : pt e f (pt (pt b d a) b c), from pt6_pt h2,

have h4 : pt e f (pt c b (pt b d a)), from pt2_pt (pt3_pt (pt2_pt h3)),

have h5 : pt e f (pt (pt c b b) d a), from pt6_pt h4,

have h6 : pt e f (pt d a (pt c b b)), from pt3_pt (pt2_pt h5),

have h7 : pt e f (pt (pt d a c) b b), from pt6_pt h6,

have h8 : pt e f (pt d a c), from pt5_pt h7,

show pt e f (pt a c d), from pt3_pt (pt2_pt h8)

• pt′′′11

lemma pt11’’’ {a b c d e f : Prop} (h1 : pt e f (pt (pt a b c) a d))

: pt e f (pt b c d) :=

have h2 : pt e f (pt d a (pt a b c)), from pt2_pt (pt3_pt (pt2_pt h1)),

have h3 : pt e f (pt (pt d a a) b c), from pt6_pt h2,

have h4 : pt e f (pt b c (pt d a a)), from pt3_pt (pt2_pt h3),

have h5 : pt e f (pt (pt b c d) a a), from pt6_pt h4,

show pt e f (pt b c d), from pt5_pt h5

• pt11

theorem pt11 {a b c d : Prop}

(h1 : pt (pt (pt a b c) a d) (pt (pt a b c) b d) (pt (pt a b c) c d)) : d :=

have h2 : pt (pt (pt a b c) a d) (pt (pt a b c) b d) (pt a b d), from pt11’ h1,
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have h3 : pt (pt (pt a b c) a d) (pt a b d) (pt (pt a b c) b d), from pt3 h2,

have h4 : pt (pt (pt a b c) a d) (pt a b d) (pt a c d), from pt11’’ h3,

have h5 : pt (pt a b d) (pt (pt a b c) a d) (pt a c d), from pt2 h4,

have h6 : pt (pt a b d) (pt a c d) (pt (pt a b c) a d) , from pt3 h5,

have h7 : pt (pt a b d) (pt a c d) (pt b c d) , from pt11’’’ h6,

have h8 : pt a b (pt d (pt a c d) (pt b c d)) , from pt7 h7,

have h9 : pt a b (pt (pt a c d) d (pt b c d)) , from pt2_pt h8,

have h10 : pt (pt a b (pt a c d)) d (pt b c d) , from pt6 h9,

have h11 : pt (pt a b (pt a c d)) d (pt b d c) , from pt3_pt h10,

have h12 : pt (pt a b (pt a c d)) d (pt d b c) , from pt2_pt h11,

have h13 : pt (pt (pt a b (pt a c d)) d d) b c, from pt6 h12,

have h14 : pt b c (pt (pt a b (pt a c d)) d d), from pt3 (pt2 h13),

have h15 : pt b c (pt a b (pt a c d)), from pt5_pt h14,

have h16 : pt b c (pt b a (pt a c d)), from pt2_pt h15,

have h17 : pt (pt b c b) a (pt a c d), from pt6 h16,

have h18 : pt a (pt a c d) (pt b c b), from pt3 (pt2 h17),

have h19 : pt a (pt a c d) (pt c b b), from pt2_pt h18,

have h20 : pt a (pt a c d) c, from pt5_pt h19,

have h21 : pt (pt a c d) a c, from pt2 h20,

show d, from pt8 h21

• pt12

theorem pt12 {a b c d e : Prop} (h1 : pt a b c) (h2 : d) (h3 : e)

: pt a b (pt c d e) :=

have h4 : pt (pt a b c) d e, from pt1 h1 h2 h3,

show pt a b (pt c d e), from pt7 h4

• pt13

theorem pt13 {a b c d e : Prop} (h1 : pt a b c) (h2 : pt a b d) (h3 : e)

: (pt c d e) :=

have h4 : pt a b (pt c (pt a b d) e), from pt12 h1 h2 h3,

have h5 : pt a b (pt (pt a b d) c e), from pt2_pt h4,

have h6 : pt (pt a b (pt a b d)) c e, from pt6 h5,

have h7 : pt c e (pt a b (pt a b d)), from pt3 (pt2 h6),

have h8 : pt c e (pt (pt a b d) a b), from pt2_pt (pt3_pt h7),

have h9 : pt c e (pt b d b), from pt11’’’ h8,

have h10 : pt c e (pt d b b), from pt2_pt h9,

have h11 : pt c e d, from pt5_pt h10,

show pt c d e, from pt3 h11
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• pt14

theorem pt14 {a b c d e : Prop} (h1 : pt a b c) (h2 : pt a b d) (h3 : pt a b e)

: pt a b (pt c d e) :=

have h4 : pt c d (pt a b e), from pt13 h1 h2 h3,

have h5 : pt c d (pt e a b), from pt2_pt (pt3_pt h4),

have h5 : pt (pt c d e) a b, from pt6 h5,

show pt a b (pt c d e), from pt3 (pt2 h5)

• pt′4

theorem pt4’ {a b c : Prop} (h1 : a) : pt (pt a b c) b c :=

have h2 : pt a b b, from pt4 h1,

have h3 : pt (pt a b b) c c, from pt4 h2,

have h4 : pt a b (pt b c c), from pt7 h3,

have h5 : pt a b (pt c b c), from pt2_pt h4,

show pt (pt a b c) b c, from pt6 h5

We now proceed to prove what we call the monotonicity property mpt and the de-

duction theorem δpt, using them in the sequel to to prove the completeness of Bpt with

respect to 2pt.

Lemma 4.9.3. The following property holds for `Bpt
:

for all Γ ∪ {A,B,C} ⊆ Lpt. if A ∈ Γ and Γ,B `Bpt
C

then Γ `Bpt
pt(A,B,C) or Γ `Bpt

C
(mpt)

Proof. Let Γ ∪ {A,B,C} ⊆ Lpt and suppose that A ∈ Γ and Γ,B `Bpt
C. Suppose that

C1, . . . ,Cn = C is an n-long sequence that witnesses the given consecution. Consider the

property P (i) given by the statement “Γ `Bpt
pt(A,B,Ci) or else Γ `Bpt

Ci”. We work

by induction on that derivation to show P (k), for all 1 ≤ k ≤ n, culminating in the

desired conclusion when k = n. In this way, for the base case, there are two possibilities

(since no axioms are available): (i) C1 ∈ Γ, in which case Γ `Bpt
C1, or (ii) C1 = B, in

which case, by rule pt4, from the assumption that A ∈ Γ, we get Γ `Bpt
pt(A,B,B), i.e.

Γ `Bpt
pt(A,B,C1). For the inductive step, given some k > 1, suppose that P (i) holds
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for all 1 ≤ i < k, so it remains to prove P (k). For that, there are three possibilities, two

of them are those of the base case — already proven, then — and the third is that Ck

follows from the instance 〈Ck1 , . . . ,Ckm ,Ck〉, kj < k, for all 1 ≤ j ≤ m, of some primitive

m-ary rule of Bpt. First, suppose that such rule is pt1. Then, Ck = pt(Ck1 ,Ck2 ,Ck3). By

the induction hypothesis, either Γ `Bpt
pt(A,B,Ckj) or Γ `Bpt

Ckj , for each 1 ≤ j ≤ 3. If

the second case holds for them all, then simply use pt1 to get Γ `Bpt
Ck. Otherwise, rules

pt12, pt13 and pt14 guarantee that, in any possible combination of the remaining cases,

Γ `Bpt
pt(A,B,Ck) or else Γ `Bpt

pt(Ck1 ,Ck2 ,Ck3). Now, suppose that Ck follows from

the one of the other rules, say pti, for some 2 ≤ i ≤ 6. Since they are all unary, there are

only two cases, by the induction hypothesis: either Γ `Bpt
pt(A,B,Ck1) or Γ `Bpt

Ck1 , for

Ck1 the formula from which Ck follows. In the first case, if the derivation occurs by the

application of the rule, then use the derived rule ptpti to get Γ `Bpt
pt(A,B,Ck). In the

other case, apply the same rule pti to get Γ `Bpt
Ck.

Theorem 4.9.4. The following property holds for `Bpt
:

for all Γ ∪ {A,B,C,D} ⊆ Lpt.

if Γ,A `Bpt
D and Γ,B `Bpt

D and Γ,C `Bpt
D

then Γ, pt(A,B,C) `Bpt
D

(δpt)

Proof. Let Γ′ = Γ ∪ {pt(A,B,C)}, and suppose that these three consecutions hold:

Γ,A `Bpt
D, Γ,B `Bpt

D, and Γ,C `Bpt
D. By Lemma 4.9.3, considering each

one of these assumptions, we get, respectively, Γ′ `Bpt
pt(pt(A,B,C),A,D), Γ′ `Bpt

pt(pt(A,B,C),B,D), and Γ′ `Bpt
pt(pt(A,B,C),C,D) (abbreviate the right-hand sides

of these consecutions by A′,B′ and C′, respectively) or else Γ′ `Bpt
D. The latter case

gives precisely the desired result. For the other cases, notice that, by pt1, we have

Γ′ `Bpt
pt(A′,B′,C′), which, by the derived rule pt11, gives Γ′ `Bpt

D.

Theorem 4.9.5. The calculus Bpt is complete with respect to the matrix 2pt.

Proof. Following the procedure presented in Section 2.7, let Γ ∪ {Z} ⊆ Lpt and take

the Z-maximal theory Γ+ ⊇ Γ via the Lindenbaum-Asser Lemma. The inspection of the

truth-table for pt in 2pt reveals the completeness property that needs to be proved:

pt(A,B,C) ∈ Γ+ iff (A,B,C ∈ Γ+) or

(A ∈ Γ+ and B,C 6∈ Γ+) or

(B ∈ Γ+ and A,C 6∈ Γ+) or

(C ∈ Γ+ and A,B 6∈ Γ+)

(pt)
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From the left to the right, suppose that pt(A,B,C) ∈ Γ+, thus (a): Γ+ `Bpt
pt(A,B,C).

First of all, suppose, for the sake of contradiction, that A,B,C 6∈ Γ+. Then, by Corol-

lary 2.6.1.1, Γ+,A `Bpt
Z, Γ+,B `Bpt

Z and Γ+,C `Bpt
Z; hence, by δpt, we get

Γ+, pt(A,B,C) `Bpt
Z, yielding, considering the consecution (a), the absurd Γ+ `Bpt

Z by

(T). We proceed by proving that it is not the case that any two of the formulas A,B and

C can be in Γ+ while the other is not. Consider the case in which A,B ∈ Γ+ but C 6∈ Γ+.

Then, in view of (a), we get, by pt1, Γ+ `Bpt
pt(pt(A,B,C),A,B), which yields, by pt8,

Γ+ `Bpt
C. This, together with the assumption that C 6∈ Γ+ (and thus Γ+,C `Bpt

Z)

gives the absurd Γ+ `Bpt
Z by (T). The cases A,C ∈ Γ+ and B ∈ Γ+, and B,C ∈ Γ+ and

A ∈ Γ+ are handled in the same way, but using rules pt9 and pt10 respectively, instead of

pt8. To finish this proof, consider the following two cases: either A,B,C ∈ Γ+ or not. The

first situation gives directly the desired result. The second case, considering the fact just

proved, has as possibilities only the cases pursued to finish this proof, which must hold

because we showed that at least one of the formulas A,B and C must be in Γ+.

From the right to the left, suppose that A,B,C ∈ Γ+, then Γ+ `Bpt
pt(A,B,C), by

pt1. Now, suppose that A ∈ Γ+ and B,C 6∈ Γ+, then Γ+,B `Bpt
Z and Γ+,C `Bpt

Z. We

proceed by contradiction: assume that pt(A,B,C) 6∈ Γ+, meaning that Γ+, pt(A,B,C) `Bpt

Z. Then, by δpt, the consecution (a): Γ+, pt(pt(A,B,C),B,C) `Bpt
Z follows. From Γ+ `Bpt

A, by pt′4, we get Γ+ `Bpt
pt(pt(A,B,C),B,C), which, together with (a), derives the absurd

Γ+ `Bpt
Z by (T). The proofs for the other two cases are analogous.

Remark 4.9.1. Notice that a sufficient condition for the preservation of the property mpt,

and thus the completeness property (pt), in any expansion of the calculus Bpt by non-

nullary rules is that, for any of the new rules, say r, its lifted version rpt is derivable in

the expanded calculus.

According to Rautenberg [11, p. 332], the fragment Bpt,⊥ is axiomatized by merging

the calculi Bpt and B⊥, as presented below, because mpt and thus δpt are preserved

after this combination. This preservation, according to the author, occurs because the

particular case of mpt in which B = ⊥ holds for the resulting calculus. We highlight here

that, although we see how this specialization implies mpt, we could not verify this result

and so a further investigation is necessary for this specific case.

Hilbert Calculus 25. Bpt,⊥
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Bpt B⊥

The expansions Bpt,> and Bpt,⊥,> are directly axiomatized, respectively, by the calculi

below, in view of Corollary 2.8.4.1.

Hilbert Calculus 26. Bpt,>

Bpt B>

Hilbert Calculus 27. Bpt,⊥,>

Bpt,⊥ B>

4.10 Bpt,¬

We now deal with the fragment on the language containing only the connectives pt

and ¬. The candidate calculus extends Bpt, presented in Section 4.9, by adding the rule

of explosion and some interaction rules.

Hilbert Calculus 28. Bpt,¬

Bpt

A ¬A
B

n1
¬pt(A,B,C)

pt(¬A,B,C)
ptn1

pt(¬A,B,C)

¬pt(A,B,C)
ptn2

pt(¬A,B,C)

pt(A,¬B,C)
ptn3

The axiomatization above differs from the one presented in [11], which consists in

merging the calculi Bpt and B¬, plus rules ptn1 and ptn2. Besides having one less rule,

our calculus eases the derivation of the rules necessary to prove completeness. We proceed

now by showing that Bpt,¬ is sound with respect to Bpt,¬.

Theorem 4.10.1. The calculus Bpt,¬ is sound with respect to the matrix 2pt,¬.
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Proof. We know from Theorem 4.8.1 and Theorem 4.9.1 that n1 and the rules of Bpt are

sound with respect to 2pt,¬. Now, let v be some 2pt,¬-valuation. For ptn1, suppose that

v(¬pt(A,B,C)) = 1, then v(pt(A,B,C)) = 0 and we can consider the following cases:

• if v(A) = 0, v(B) = 0 and v(C) = 0, then v(¬A) = 1 and v(pt(¬A,B,C)) =

pt2pt,¬(v(¬A), v(B), v(C)) = pt2pt,¬(1, 0, 0) = 1.

• if v(A) = 1, v(B) = 1 and v(C) = 0, then v(¬A) = 0 and v(pt(¬A,B,C)) =

pt2pt,¬(v(¬A), v(B), v(C)) = pt2pt,¬(0, 1, 0) = 1.

• if v(A) = 1, v(B) = 0 and v(C) = 1, then v(¬A) = 0 and v(pt(¬A,B,C)) =

pt2pt,¬(v(¬A), v(B), v(C)) = pt2pt,¬(0, 0, 1) = 1.

• if v(A) = 0, v(B) = 1 and v(C) = 1, then v(¬A) = 1 and v(pt(¬A,B,C)) =

pt2pt,¬(v(¬A), v(B), v(C)) = pt2pt,¬(1, 1, 1) = 1.

For ptn2, suppose that v(pt(¬A,B,C)) = 1 and consider the following cases:

• if v(¬A) = 1, v(B) = 1 and v(C) = 1, then v(A) = 0 and v(pt(A,B,C)) =

pt2pt,¬(v(A), v(B), v(C)) = pt2pt,¬(0, 1, 1) = 0, whose negation gives 1.

• if v(¬A) = 1, v(B) = 0 and v(C) = 0, then v(A) = 0 and v(pt(A,B,C)) =

pt2pt,¬(v(A), v(B), v(C)) = pt2pt,¬(0, 0, 0) = 0, whose negation gives 1.

• if v(¬A) = 0, v(B) = 0 and v(C) = 1, then v(A) = 1 and v(pt(A,B,C)) =

pt2pt,¬(v(A), v(B), v(C)) = pt2pt,¬(1, 0, 1) = 0, whose negation gives 1.

• if v(¬A) = 0, v(B) = 1 and v(C) = 0, then v(A) = 1 and v(pt(A,B,C)) =

pt2pt,¬(v(A), v(B), v(C)) = pt2pt,¬(1, 1, 0) = 0, whose negation gives 1.

Finally, for ptn3, suppose that v(pt(¬A,B,C)) = 1 and consider the following cases:

• if v(¬A) = 1, v(B) = 1 and v(C) = 1, then v(A) = 0 and v(¬B) = 0, so

v(pt(A,¬B,C)) = pt2pt,¬(v(A), v(¬B), v(C)) = pt2pt,¬(0, 0, 1) = 1;

• if v(¬A) = 1, v(B) = 0 and v(C) = 0, then v(A) = 0 and v(¬B) = 1, so

v(pt(A,¬B,C)) = pt2pt,¬(v(A), v(¬B), v(C)) = pt2pt,¬(0, 1, 0) = 1;

• if v(¬A) = 0, v(B) = 1 and v(C) = 0, then v(A) = 1 and v(¬B) = 0, so

v(pt(A,¬B,C)) = pt2pt,¬(v(A), v(¬B), v(C)) = pt2pt,¬(1, 0, 0) = 1;
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• if v(¬A) = 0, v(B) = 0 and v(C) = 1, then v(A) = 1 and v(¬B) = 1, so

v(pt(A,¬B,C)) = pt2pt,¬(v(A), v(¬B), v(C)) = pt2pt,¬(1, 1, 1) = 1.

The next result presents the derivation of the negated versions of some rules of Bpt

(same premisses and conclusions, but with a negation in front), which will be very useful

in proving the pt-lifted versions of the rules n1 and ptni, for each 1 ≤ i ≤ 3, the necessary

ingredients to guarantee that the completeness property (pt) holds in Bpt,¬, according to

Remark 4.9.1.

Lemma 4.10.2. The following rules are derivable in Bpt,¬:

¬pt(A,B,C)

¬pt(B,A,C)
pt¬2

¬pt(A,B,C)

¬pt(A,C,B)
pt¬3

¬A
¬pt(A,B,B)

pt¬4

¬pt(A,B,B)

¬A
pt¬5

¬pt(A,B, pt(C,D,E))

¬pt(pt(A,B,C),D,E)
pt¬6

¬pt(pt(A,B,C),D,E)

¬pt(A,B, pt(C,D,E))
pt¬7

pt(C,D,A) pt(C,D,¬A)

pt(C,D,B)
npt
1

pt(D,E,¬pt(A,B,C))

pt(D,E, pt(¬A,B,C))
ptnpt

1

pt(D,E, pt(¬A,B,C))

pt(D,E,¬pt(A,B,C))
ptnpt

2

pt(D,E, pt(¬A,B,C))

pt(D,E, pt(A,¬B,C))
ptnpt

3

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• pt¬2

theorem pt2_neg {a b c : Prop} (h1 : neg (pt a b c)) : neg (pt b a c) :=

have h2 : pt (neg a) b c, from ptn1 h1,
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have h3 : pt a (neg b) c, from ptn3 h2,

have h4 : pt (neg b) a c, from pt.pt2 h3,

show neg (pt b a c), from ptn2 h4

• pt¬3

theorem pt3_neg {a b c : Prop} (h1 : neg (pt a b c)) : neg (pt a c b) :=

have h2 : pt (neg a) b c, from ptn1 h1,

have h3 : pt (neg a) c b, from pt.pt3 h2,

show neg (pt a c b), from ptn2 h3

• pt¬4

theorem pt4_neg {a b : Prop} (h1 : neg a) : neg (pt a b b) :=

have h2 : pt (neg a) b b, from pt.pt4 h1,

show neg (pt a b b), from ptn2 h2

• pt¬5

theorem pt5_neg {a b : Prop} (h1 : neg (pt a b b)) : neg a :=

have h2 : pt (neg a) b b, from ptn1 h1,

show neg a, from pt.pt5 h2

• pt¬6

theorem pt6_neg {a b c d e : Prop} (h1 : neg (pt a b (pt c d e))) : neg (pt (pt a b c) d e) :=

have h2 : pt (neg a) b (pt c d e), from ptn1 h1,

have h3 : pt (pt (neg a) b c) d e, from pt.pt6 h2,

have h4 : pt d e (pt (neg a) b c), from pt.pt3 (pt.pt2 h3),

have h5 : pt (pt d e (neg a)) b c, from pt.pt6 h4,

have h6 : pt b c (pt d e (neg a)), from pt.pt3 (pt.pt2 h5),

have h7 : pt b c (pt (neg a) d e), from pt.pt2_ast (pt.pt3_ast h6),

have h8 : pt (pt (neg a) d e) b c, from pt.pt2 (pt.pt3 h7),

have h9 : pt (neg a) d (pt e b c), from pt.pt7 h8,

have h10 : neg (pt a d (pt e b c)), from ptn2 h9,

have h11 : neg (pt d a (pt e b c)), from pt2_neg h10,

have h12 : pt (neg d) a (pt e b c), from ptn1 h11,

have h13 : pt (pt (neg d) a e) b c, from pt.pt6 h12,

have h14 : pt b c (pt (neg d) a e), from pt.pt3 (pt.pt2 h13),

have h15 : pt b c (pt a (neg d) e), from pt.pt2_ast h14,
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have h16 : pt (pt b c a) (neg d) e, from pt.pt6 h15,

have h17 : pt (neg d) e (pt b c a), from pt.pt3 (pt.pt2 h16),

have h18 : pt (neg d) e (pt a b c), from pt.pt2_ast (pt.pt3_ast h17),

have h19 : neg (pt d e (pt a b c)), from ptn2 h18,

show neg (pt (pt a b c) d e), from pt2_neg (pt3_neg h19)

• pt¬7

theorem pt7_neg {a b c d e : Prop} (h1 : neg (pt (pt a b c) d e)) : neg (pt a b (pt c d e)) :=

have h2 : neg (pt d (pt a b c) e), from pt2_neg h1,

have h3 : neg (pt d e (pt a b c)), from pt3_neg h2,

have h4 : neg (pt (pt d e a) b c), from pt6_neg h3,

have h5 : neg (pt b (pt d e a) c), from pt2_neg h4,

have h6 : neg (pt b c (pt d e a)), from pt3_neg h5,

have h7 : neg (pt (pt b c d) e a), from pt6_neg h6,

have h8 : neg (pt e (pt b c d) a), from pt2_neg h7,

have h9 : neg (pt e a (pt b c d)), from pt3_neg h8,

have h10 : neg (pt (pt e a b) c d), from pt6_neg h9,

have h11 : neg (pt c (pt e a b) d), from pt2_neg h10,

have h12 : neg (pt c d (pt e a b)), from pt3_neg h11,

have h13 : neg (pt (pt c d e) a b), from pt6_neg h12,

have h14 : neg (pt a (pt c d e) b), from pt2_neg h13,

show neg (pt a b (pt c d e)), from pt3_neg h14

• npt
1

theorem n1_pt {a b c d : Prop} (h1 : pt c d a) (h2 : pt c d (neg a)) : pt c d b :=

have h3 : pt a c d, from pt.pt2 (pt.pt3 h1),

have h4 : pt (neg a) c d, from pt.pt2 (pt.pt3 h2),

have h5 : neg (pt a c d), from ptn2 h4,

show pt c d b, from n1 h3 h5

• ptnpt
1

theorem ptn1_pt {a b c d e : Prop} (h1 : pt d e (neg (pt a b c)))

: pt d e (pt (neg a) b c) :=

have h2 : pt (neg (pt a b c)) d e, from pt.pt2 (pt.pt3 h1),

have h3 : neg (pt (pt a b c) d e), from ptn2 h2,

have h4 : neg (pt a b (pt c d e)), from pt7_neg h3,

have h5 : pt (neg a) b (pt c d e), from ptn1 h4,

have h6 : pt (pt (neg a) b c) d e, from pt.pt6 h5,
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show pt d e (pt (neg a) b c), from pt.pt3 (pt.pt2 h6)

• ptnpt
2

theorem ptn2_pt {a b c d e : Prop} (h1 : pt d e (pt (neg a) b c))

: pt d e (neg (pt a b c)) :=

have h2 : pt (pt (neg a) b c) d e, from pt.pt2 (pt.pt3 h1),

have h3 : pt (neg a) b (pt c d e), from pt.pt7 h2,

have h4 : neg (pt a b (pt c d e)), from ptn2 h3,

have h5 : neg (pt (pt a b c) d e), from pt6_neg h4,

have h6 : pt (neg (pt a b c)) d e, from ptn1 h5,

show pt d e (neg (pt a b c)), from pt.pt3 (pt.pt2 h6)

• ptnpt
3

theorem ptn3_pt {a b c d e : Prop} (h1 : pt d e (neg (pt a b c)))

: pt d e (pt a (neg b) c) :=

have h2 : pt (neg (pt a b c)) d e, from pt.pt2 (pt.pt3 h1),

have h3 : neg (pt (pt a b c) d e), from ptn2 h2,

have h4 : neg (pt a b (pt c d e)), from pt7_neg h3,

have h5 : neg (pt b a (pt c d e)), from pt2_neg h4,

have h6 : pt (neg b) a (pt c d e), from ptn1 h5,

have h7 : pt a (neg b) (pt c d e), from pt.pt2 h6,

have h8 : pt (pt a (neg b) c) d e, from pt.pt6 h7,

show pt d e (pt a (neg b) c), from pt.pt3 (pt.pt2 h8)

Theorem 4.10.3. The calculus Bpt,¬ is complete with respect to the matrix 2pt,¬.

Proof. According to the procedure presented in Section 2.7, we need to prove that the com-

pleteness properties (¬) and (pt) — introduced respectively in the proofs of Theorem 4.8.4

and Theorem 4.9.5 — hold in Bpt,¬. By Remark 4.9.1, the derivability of npt
1 and ptnpt

i , for

each 1 ≤ i ≤ 3, implies that propertiesmpt and (pt) hold in Bpt,¬. Now, remember that the

completeness property for ¬ is (¬) ¬A ∈ Γ+ iff A 6∈ Γ+, for a Z-maximal Γ+ ⊇ Γ, where

Γ∪ {Z} ⊆ Lpt,¬ and Γ 6`Bpt,¬ Z. The left-to-right direction follows because of rule n1. The

converse is more involving and to prove it we work by contradiction: suppose that A 6∈ Γ+

and ¬A 6∈ Γ+. Then, by Corollary 2.6.1.1, (a): Γ+,A `Bpt,¬ Z and (b): Γ+,¬A `Bpt,¬ Z.
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Since Bpt,¬ has no tautologies, Lemma 2.6.2 allows us to take some B ∈ Γ+. Hence, by (a),

(b) and mpt, we get Γ+ `Bpt,¬ pt(B,A,Z) and Γ+ `Bpt,¬ pt(B,¬A,Z) (since Γ+ `Bpt,¬ Z is

not the case), yielding (c): Γ+ `Bpt,¬ pt(A,B,Z) and Γ+ `Bpt,¬ pt(¬A,B,Z) by rule pt2.

The latter consecution, by ptn2, gives (d): Γ+ `Bpt,¬ ¬pt(A,B,Z). Thus, by rule n1, from

(c) and (d), we have Γ+ `Bpt,¬ Z, an absurd.

4.11 Bdc

The classical connective dc may be defined from those in B by means of the translation

t(dc) = λp, q, r.(p ∧ q) ∨ (q ∧ r) ∨ (p ∧ r). An inspection of the truth table of dc2 reveals

that dc2(x, y, z) = 1 if, and only if, exactly two or all of the arguments x, y and z are 1.

The calculus presented below is a candidate axiomatization for the fragment Bdc. In the

sequel, we prove its soundness with respect to 2dc.

Hilbert Calculus 29. Bdc

A B
dc(A,B,C)

dc1

dc(B,A,A)

A
dc2

A
dc(B,A,A)

dc3

dc(D,E, dc(A,B,C))

dc(E,D, dc(B,A,C))
dc4

dc(D,E, dc(A,B,C))

dc(E,D, dc(A,C,B))
dc5

dc(F,G, dc(D,E, dc(A,B,C)))

dc(F,G, dc(dc(D,E,A), dc(D,E,B),C))
dc6

dc(F,G, dc(dc(D,E,A), dc(D,E,B),C))

dc(F,G, dc(D,E, dc(A,B,C)))
dc7

Theorem 4.11.1. The calculus Bdc is sound with respect to the matrix 2dc.

Proof. Let v be a 2dc-valuation. For rule dc1, if v(A) = 1 and v(B) = 1, then

v(dc(A,B,C)) = dc2dc(v(A), v(B), v(C)) = dc2dc(1, 1, v(C)) = 1. For rule dc2, if v(A) = 0,

then v(dc(B,A,A)) = dc2dc(v(B), v(A), v(A)) = dc2dc(v(B), 0, 0) = 0. The argument for
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dc3 is analogous to that for dc1. For rules dc4 and dc5, it is enough to notice that permut-

ing the components of ad(A,B,C) does not change its value under v. Finally, for unary

rules dc6 and dc7 (one is the converse of the other), we can check that the two involved

formulas are logically equivalent considering `2 , and thus also in `2dc .

In what follows, if r is an n-ary rule, with n ∈ ω, let rdc, the dc-lifted version of

r, be the rule given by the set of instances 〈dc(C,D,A1), . . . , dc(C,D,An), dc(C,D,B)〉,
where 〈A1, . . . ,An,B〉 is an instance of r and C,D ∈ Ldc. The next lemma presents the

derivability of some rules in Bdc, including the dc-lifted versions of its primitive rules,

which lead to the completeness result with respect to 2dc, as we will see in the sequel.

Lemma 4.11.2. The following rules are derivable in Bdc:

dc(A,B,C)

dc(B,A,C)
dc′4

dc(A,B,C)

dc(A,C,B)
dc′5

dc(D,E, dc(A,B,C))

dc(dc(D,E,A), dc(D,E,B),C)
dc′6

dc(dc(D,E,A), dc(D,E,B),C)

dc(D,E, dc(A,B,C))
dc′7

dc(D,E,A) dc(D,E,B)

dc(D,E, dc(A,B,C))
dcdc1

dc(C,D, dc(B,A,A))

dc(C,D,A)
dcdc2

dc(C,D,A)

dc(C,D, dc(B,A,A))
dcdc3

dc(F,G, dc(D,E, dc(A,B,C)))

dc(F,G, dc(E,D, dc(B,A,C)))
dcdc4

dc(F,G, dc(D,E, dc(A,B,C)))

dc(F,G, dc(E,D, dc(A,C,B)))
dcdc5

dc(H, I, dc(F,G, dc(D,E, dc(A,B,C))))

dc(H, I, dc(F,G, dc(dc(D,E,A), dc(D,E,B),C)))
dcdc6

dc(H, I, dc(F,G, dc(dc(D,E,A), dc(D,E,B),C)))

dc(H, I, dc(F,G, dc(D,E, dc(A,B,C))))
dcdc7

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• dc′4
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theorem dc4’ {a b c : Prop} (h1 : dc a b c) : dc b a c :=

have h2 : dc (dc b a c) (dc a b c) (dc a b c), from dc3 h1,

have h3 : dc (dc a b c) (dc b a c) (dc b a c), from dc4 h2,

show dc b a c, from dc2 h3

• dc′5

theorem dc5’ {a b c : Prop} (h1 : dc a b c) : dc a c b :=

have h2 : dc (dc a c b) (dc a b c) (dc a b c), from dc3 h1,

have h3 : dc (dc a b c) (dc a c b) (dc a c b), from dc5 h2,

show dc a c b, from dc2 h3

• dc′6

theorem dc6’ {a b c d e : Prop} (h1 : dc d e (dc a b c)) : dc (dc d e a) (dc d e b) c :=

let f := dc d e (dc a b c), g := dc (dc d e a) (dc d e b) c in

have h2 : dc g f f, from dc3 h1,

have h3 : dc g f g, from dc6 h2,

have h4 : dc f g g, from dc4’ h3,

show g, from dc2 h4

• dc′7

theorem dc7’ {a b c d e : Prop}

(h1 : dc (dc d e a) (dc d e b) c) : dc d e (dc a b c) :=

let f := dc d e (dc a b c), g := dc (dc d e a) (dc d e b) c in

have h2 : dc f g g, from dc3 h1,

have h3 : dc f g f, from dc7 h2,

have h4 : dc g f f, from dc4’ h3,

show f, from dc2 h4

• dcdc1

theorem dc1_dc {a b c d e : Prop} (h1 : dc d e a) (h2 : dc d e b) : dc d e (dc a b c) :=

have h2 : dc (dc d e a) (dc d e b) c, from dc1 h1 h2,

show dc d e (dc a b c), from dc7’ h2

• dcdc2
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theorem dc2_dc {a b c d : Prop} (h1 : dc c d (dc b a a)) : dc c d a :=

have h2 : dc d c (dc a b a), from dc4 h1,

have h3 : dc c d (dc a a b), from dc5 h2,

have h4 : dc (dc c d a) (dc c d a) b, from dc6’ h3,

have h5 : dc b (dc c d a) (dc c d a), from dc4’ (dc5’ h4),

show dc c d a, from dc2 h5

• dcdc3

theorem dc3_dc {a b c d : Prop} (h1 : dc c d a) : dc c d (dc b a a) :=

have h2 : dc b (dc c d a) (dc c d a), from dc3 h1,

have h3 : dc (dc c d a) (dc c d a) b, from dc5’ (dc4’ h2),

have h4 : dc c d (dc a a b), from dc7’ h3,

have h5 : dc d c (dc a b a), from dc5 h4,

show dc c d (dc b a a), from dc4 h5

• dcdc4

theorem dc4_dc {a b c d e f g : Prop} (h1 : dc f g (dc d e (dc a b c))) :

dc f g (dc e d (dc b a c)) :=

have h2 : dc g f (dc e d (dc a b c)), from dc4 h1,

have h3 : dc g f (dc (dc e d a) (dc e d b) c), from dc6 h2,

have h4 : dc f g (dc (dc e d b) (dc e d a) c), from dc4 h3,

show dc f g (dc e d (dc b a c)), from dc7 h4

• dcdc5

theorem dc5_dc {a b c d e f g : Prop} (h1 : dc f g (dc d e (dc a b c))) :

dc f g (dc e d (dc a c b)) :=

have h2 : dc g f (dc e d (dc a b c)), from dc4 h1,

have h3 : dc (dc g f e) (dc g f d) (dc a b c), from dc6’ h2,

have h4 : dc (dc g f d) (dc g f e) (dc a c b), from dc5 h3,

have h5 : dc g f (dc d e (dc a c b)), from dc7’ h4,

show dc f g (dc e d (dc a c b)), from dc4 h5

• dcdc6

theorem dc6_dc {a b c d e f g h i : Prop} (h1 : dc h i (dc f g (dc d e (dc a b c))))

: dc h i (dc f g (dc (dc d e a) (dc d e b) c)) :=
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have h2 : dc (dc h i f) (dc h i g) (dc d e (dc a b c)), from dc6’ h1,

have h3 : dc (dc h i f) (dc h i g) (dc (dc d e a) (dc d e b) c), from dc6 h2,

show dc h i (dc f g (dc (dc d e a) (dc d e b) c)), from dc7’ h3

• dcdc7

theorem dc7_dc {a b c d e f g h i : Prop}

(h1 : dc h i (dc f g (dc (dc d e a) (dc d e b) c))) :

dc h i (dc f g (dc d e (dc a b c))) :=

have h2 : dc (dc h i f) (dc h i g) (dc (dc d e a) (dc d e b) c), from dc6’ h1,

have h3 : dc (dc h i f) (dc h i g) (dc d e (dc a b c)), from dc7 h2,

show dc h i (dc f g (dc d e (dc a b c))), from dc7’ h3

Lemma 4.11.3. The following property holds for `Bdc
:

for all Γ ∪ {A,B,C,D} ⊆ Ldc.

if Γ,C `Bdc
D then Γ, dc(A,B,C) `Bdc

dc(A,B,D)
(mdc)

Proof. Let Γ∪{A,B,C,D} ⊆ Ldc and suppose that Γ,C `Bdc
D and that this is witnessed

by the n-long derivation D1, . . . ,Dn = D. Consider the property P (i) given by the conse-

cution Γ, dc(A,B,C) `Bdc
dc(A,B,Di). Let us prove by induction on this derivation that

P (j) holds for all 1 ≤ j ≤ n, and P (n) will be the desired result. In the base case, there

are two possibilities:

• D1 = C, then trivially Γ, dc(A,B,C) `Bdc
dc(A,B,C) by (R) and (M).

• D1 ∈ Γ, in which case we use the fact that from {dc(A,B,C),D} we get dc(A,B,D)

by the following deduction:

(1) dc(A,B,C) Assumption

(2) D Assumption

(3) dc(dc(A,B,C),D, dc(A,B,D)) 1, 2 dc1

(4) dc(dc(A,B,C), dc(A,B,D),D) 3 dc′5

(5) dc(A,B, dc(C,D,D)) 4 dc′7

(6) dc(A,B,D) 5 dcdc2
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For the inductive step, suppose that P (j) holds for all 1 ≤ j < k, where k > 1. Then, there

are three cases to consider regarding Dk: two of them are the same as in the base case,

while the other considers Dk as a result from one of the m-ary rules of Bdc, say dci, by the

instance 〈Dk1 , . . . ,Dkm ,Bk〉, where kl < k, for all 1 ≤ l ≤ m. By the inductive hypothesis,

the formulas dc(A,B,Dk1), . . . , dc(A,B,Dkm) are all derivable from Γ∪{dc(A,B,C)}. Then
simply apply to such formulas the dc-lifted version of rule dci, namely dcdci , proved to be

derivable in Lemma 4.11.2, to obtain the desired dc(A,B,Dk) from Γ∪{dc(A,B,C)}.

Theorem 4.11.4. The following property holds for `Bdc
:

for all Γ ∪ {A,B,C,D} ⊆ Ldc

if Γ,B `Bdc
D and Γ,C `Bdc

D then Γ, dc(A,B,C) `Bdc
D

(δdc)

Proof. Let Γ ∪ {A,B,C,D} ⊆ Ldc and suppose that Γ,B `Bdc
D and Γ,C `Bdc

D. By

mdc, we have (a): Γ, dc(A,D,B) `Bdc
dc(A,D,D) and (b): Γ, dc(A,B,C) `Bdc

dc(A,B,D).

From (a), by dc2, we get (a’): Γ, dc(A,D,B) `Bdc
D. From (b), by dc′5, we get (b’):

Γ, dc(A,B,C) `Bdc
dc(A,D,B). Finally, by (T) applied to (a’) and (b’), we get the desired

result Γ, dc(A,B,C) `Bdc
D.

Theorem 4.11.5. The calculus Bdc is complete with respect to the matrix 2dc.

Proof. According to the procedure presented in Section 2.7, let Γ ∪ {Z} ⊆ Ldc and take

the Z-maximal theory Γ+ ⊇ Γ via the Lindenbaum-Asser Lemma. The inspection of the

truth-table for dc in 2dc reveals the completeness property that needs to be proved:

dc(A,B,C) ∈ Γ+ iff A,B ∈ Γ+ or A,C ∈ Γ+ or B,C ∈ Γ+. (dc)

From the left to the right, suppose that (a): Γ+ `Bdc
dc(A,B,C). Proceed by contra-

diction: suppose first that A,B 6∈ Γ+, thus Γ+,A `Bdc
Z and Γ+,B `Bdc

Z. Then, by δdc,

we get Γ+, dc(A,B,C) `Bdc
Z and, by (T) applied to the latter and (a), we get Γ+ `Bdc

Z,

a contradiction. The other two cases are analogous with the help of the permuting rules

dc′4 and dc′5. Next, from the right to the left, we need to consider the three cases A,B ∈ Γ+,

A,C ∈ Γ+ and B,C ∈ Γ+. Suppose first that A,B ∈ Γ+. Then, Γ+ `Bdc
A and Γ+ `Bdc

B.

By rule dc1, Γ+ `Bdc
dc(A,B,C). Suppose now that A,C ∈ Γ+. Then, Γ+ `Bdc

A and

Γ+ `Bdc
C. By rule dc1, Γ+ `Bdc

dc(A,C,B), and, by dc′5, we get Γ+ `Bdc
dc(A,B,C). The

third case is similar, the only difference being the application of dc′4 and dc′5, instead of

only the former.
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Remark 4.11.1. Notice that a sufficient condition for the preservation of the property mdc,

and thus the completeness property (dc), in any expansion of the calculus Bdc by non-

nullary rules is that, for any of the new rules, say r, its dc-lifted version rdc is derivable in

the expanded calculus.

4.12 Bpt,dc

The proposed calculus for the fragment Bpt,dc is one of the most complex calculi present

in this work. Rautenberg, in [11], just indicated that adding rules dcpt1 and dcpt3 (see

below) to the merging of Bpt and Bdc is the path for finding the desired axiomatization,

without presenting the full calculus or any details about its completeness with respect to

2pt,dc. Here, we have found that adding the converses of the mentioned rules (dcpt2 and

dcpt4 below, respectively), together with the dc-lifted versions of dcpt3 and dcpt4 and the

pt-lifted versions of dcpt5 and dcpt6 are enough to complete the axiomatization suggested

by Rautenberg. See, in the sequel, the resulting calculus followed by the proof of soundness

with respect to 2pt,dc.

Hilbert Calculus 30. Bpt,dc

Bpt Bdc

dc(A,B, pt(C,D,E))

pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))
dcpt1

pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))

dc(A,B, pt(C,D,E))
dcpt2

pt(A,B, dc(C,D,E))

dc(pt(A,B,C), pt(A,B,D), pt(A,B,E))
dcpt3

dc(pt(A,B,C), pt(A,B,D), pt(A,B,E))

pt(A,B, dc(C,D,E))
dcpt4

dc(F,G, pt(A,B, dc(C,D,E)))

dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E)))
dcpt5

dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E)))

dc(F,G, pt(A,B, dc(C,D,E)))
dcpt6

pt(F,G, dc(A,B, pt(C,D,E)))

pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)))
dcpt7
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pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)))

pt(F,G, dc(A,B, pt(C,D,E)))
dcpt8

Theorem 4.12.1. The calculus Bpt,dc is sound with respect to the matrix 2pt,dc.

Proof. Let v be a 2pt,dc-valuation. For dcpt1, consider the cases in which v assigns 1 to

dc(A,B, pt(C,D,E)):

• v(A) = 1, v(B) = 1: these assignments to A and B cause v(dc(A,B, ·)) = 1, thus v

assigns 1 to pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)).

• v(A) = 1, v(B) = 0 and v(pt(C,D,E)) = 1: the assignment v(pt(C,D,E)) = 1

means that all of the formulas C, D and E are assigned the value 1 or only one

of them. In the first case, we will have v(dc(A,B,C)) = 1, v(dc(A,B,D)) = 1

and v(dc(A,B,E)) = 1, so the conclusion gets the value 1 under v. In the other

case, only one of those formulas are assigned to 1 under v, what also makes

v(pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))) = 1.

• v(A) = 0, v(B) = 1 and v(pt(C,D,E)) = 1: similar to the previous case.

For rule dcpt2, suppose that v assigns 0 to dc(A,B, pt(C,D,E)) and consider the cases

that leads to this. A reasoning dual to the one used previously shows that the premiss of

dcpt2 is always evaluated to 0 under this condition. For rule dcpt3, suppose that v assigns

1 to pt(A,B, dc(C,D,E)). Then we have the following cases to consider:

• v(A) = 1, v(B) = 0 and v(dc(C,D,E)) = 0: from v(dc(C,D,E)) = 0 we have the

cases

– v(C) = 0, v(D) = 0 and v(E) = 0: since v(A) = 1 and v(B) = 0, we have

v(pt(A,B,C)) = 1, v(pt(A,B,D)) = 1, v(pt(A,B,E)) = 1, so v also assigns 1

to the conclusion.

– v(C) = 1, v(D) = 0 and v(E) = 0: since v(A) = 1 and v(B) = 0, we have

v(pt(A,B,C)) = 1, while v(pt(A,B,D)) = 0, v(pt(A,B,E)) = 0, so v also

assigns 1 to the conclusion.

– v(C) = 0, v(D) = 1 and v(E) = 0, or v(C) = 0, v(D) = 0 and v(E) = 1: similar

to the previous case.

• v(A) = 0, v(B) = 1 and v(dc(C,D,E)) = 0: analogous to the case above.
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• v(A) = 0, v(B) = 0 and v(dc(C,D,E)) = 1: in view of v(dc(C,D,E)) = 1, consider

the cases

– v(C) = 1, v(D) = 1 and v(E) = 1: since v(A) = v(B) = 0, we have

v(pt(A,B,C)) = 1, v(pt(A,B,D)) = 1, v(pt(A,B,E)) = 1, so the conclusion

gets the value 1 under v.

– v(C) = 1, v(D) = 1 and v(E) = 0: since v(A) = v(B) = 0, we have

v(pt(A,B,C)) = 1, v(pt(A,B,D)) = 1, v(pt(A,B,E)) = 0, so the conclusion

gets the value 1 under v.

– v(C) = 0, v(D) = 1 and v(E) = 1, or v(C) = 1, v(D) = 0 and v(E) = 1:

analogous to the previous case.

• v(A) = 1, v(B) = 1 and v(dc(C,D,E)) = 1: analogous to the case above.

For dcpt4, assume that v assigns 0 to pt(A,B, dc(C,D,E)) and proceed similarly to the

previous proof, but considering the four cases that emerge from this assumption, in order

to show that the premiss is always assigned the value 0 under v. The soundness of the

remaining rules follows from the previous ones and the fact that if we have v(Q) = v(Q′),

then v(#(A,B,Q)) = v(#(A,B,Q′)), for some ternary connective #.

The primitive rules of the proposed calculus allow us to derive their pt- and dc-lifted

versions, which are what we need to prove the completeness of Bpt,dc with respect to

2pt,dc. The lemma below presents such derivations together with some auxiliar rules.

Lemma 4.12.2. The following rules are derivable in Bdc,pt:

dc(D,E,A) dc(D,E,B) dc(D,E,C)

dc(D,E, pt(A,B,C))
ptdc1

dc(D,E, pt(A,B,C))

dc(D,E, pt(B,A,C))
ptdc2

dc(D,E, pt(A,B,C))

dc(D,E, pt(A,C,B))
ptdc3

dc(C,D,A)

dc(C,D, pt(A,B,B))
ptdc4

dc(C,D, pt(A,B,B))

dc(C,D,A)
ptdc5

dc(F,G, pt(A,B, pt(C,D,E)))

dc(F,G, pt(pt(A,B,C),D,E))
ptdc6
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dc(F,G, pt(pt(A,B,C),D,E))

dc(F,G, pt(A,B, pt(C,D,E)))
ptdc7

pt(D,E,A) pt(D,E,B)

pt(D,E, dc(A,B,C))
dcpt1

pt(C,D, dc(B,A,A))

pt(C,D,A)
dcpt2

pt(C,D,A)

pt(C,D, dc(B,A,A))
dcpt3

pt(F,G, dc(D,E, dc(A,B,C)))

pt(F,G, dc(E,D, dc(B,A,C)))
dcpt4

pt(F,G, dc(D,E, dc(A,B,C)))

pt(F,G, dc(E,D, dc(A,C,B)))
dcpt5

dc(H, I, dc(F,G, pt(A,B, dc(C,D,E))))

dc(H, I, dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E))))
dcptdc5

dc(H, I, dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E))))

dc(H, I, dc(F,G, pt(A,B, dc(C,D,E))))
dcptdc6

pt(H, I, dc(F,G, dc(D,E, dc(A,B,C))))

pt(H, I, dc(F,G, dc(dc(D,E,A), dc(D,E,B),C)))
dcpt6

pt(H, I, dc(F,G, dc(dc(D,E,A), dc(D,E,B),C)))

pt(H, I, dc(F,G, dc(D,E, dc(A,B,C))))
dcpt7

pt(D,E, pt(A,B,C))

pt(D,E, dc(B,A,C))
dc′

pt
4

pt(D,E, dc(A,B,C))

pt(D,E, dc(A,C,B))
dc′

pt
5

pt(F,G, dc(D,E, dc(A,B,C)))

pt(F,G, dc(dc(D,E,A), dc(D,E,B),C))
dc′

pt
6

pt(F,G, dc(dc(D,E,A), dc(D,E,B),C))

pt(F,G, dc(D,E, dc(A,B,C)))
dc′

pt
7

pt(F,G, dc(A,B, pt(C,D,E)))

pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)))
dcptpt1

pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)))

pt(F,G, dc(A,B, pt(C,D,E)))
dcptpt2

pt(F,G, pt(A,B, dc(C,D,E)))

pt(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E)))
dcptpt3

pt(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E)))

pt(F,G, pt(A,B, dc(C,D,E)))
dcptpt4

pt(H, I, dc(F,G, pt(A,B, dc(C,D,E))))

pt(H, I, dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E))))
dcptpt5
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pt(H, I, dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E))))

pt(H, I, dc(F,G, pt(A,B, dc(C,D,E))))
dcptpt6

pt(H, I, pt(F,G, dc(A,B, pt(C,D,E))))

pt(H, I, pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))))
dcptpt7

pt(H, I, pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))))

pt(H, I, pt(F,G, dc(A,B, pt(C,D,E))))
dcptpt8

dc(F,G, dc(A,B, pt(C,D,E)))

dc(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)))
dcptdc1

dc(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E)))

dc(F,G, dc(A,B, pt(C,D,E)))
dcptdc2

dc(F,G, pt(A,B, dc(C,D,E)))

dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E)))
dcptdc3

dc(F,G, dc(pt(A,B,C), pt(A,B,D), pt(A,B,E)))

dc(F,G, pt(A,B, dc(C,D,E)))
dcptdc4

dc(H, I, pt(F,G, dc(A,B, pt(C,D,E))))

dc(H, I, pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))))
dcptdc7

dc(H, I, pt(F,G, pt(dc(A,B,C), dc(A,B,D), dc(A,B,E))))

dc(H, I, pt(F,G, dc(A,B, pt(C,D,E))))
dcptdc8

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• ptdc1

theorem pt1_dc {a b c d e : Prop} (h1 : dc d e a) (h2 : dc d e b) (h3 : dc d e c)

: dc d e (pt a b c) := dcpt2 (pt.pt1 h1 h2 h3)

• ptdc2

theorem pt2_dc {a b c d e : Prop} (h1 : dc d e (pt a b c)) : dc d e (pt b a c) :=

dcpt2 (pt.pt2 (dcpt1 h1))

• ptdc3

theorem pt3_dc {a b c d e : Prop} (h1 : dc d e (pt a b c)) : dc d e (pt a c b) :=

dcpt2 (pt.pt3 (dcpt1 h1))

• ptdc4
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theorem pt4_dc {a b c d : Prop} (h1 : dc c d a) : dc c d (pt a b b) :=

dcpt2 (pt.pt4 h1)

• ptdc5

theorem pt5_dc {a b c d : Prop} (h1 : dc c d (pt a b b)) : dc c d a :=

pt.pt5 (dcpt1 h1)

• ptdc6

theorem pt6_dc {a b c d e f g : Prop} (h1 : dc f g (pt a b (pt c d e))) :

dc f g (pt (pt a b c) d e) :=

have h2 : pt (dc f g a) (dc f g b) (dc f g (pt c d e)),

from dcpt1 h1,

have h3 : pt (dc f g a) (dc f g b) (pt (dc f g c) (dc f g d) (dc f g e)),

from dcpt7 h2,

have h4 : pt (pt (dc f g a) (dc f g b) (dc f g c)) (dc f g d) (dc f g e),

from pt.pt6 h3,

have h5 : pt (dc f g d) (dc f g e) (pt (dc f g a) (dc f g b) (dc f g c)),

from pt.pt3 (pt.pt2 h4),

have h6 : pt (dc f g d) (dc f g e) (dc f g (pt a b c)),

from dcpt8 h5,

have h7 : pt (dc f g (pt a b c)) (dc f g d) (dc f g e),

from pt.pt2 (pt.pt3 h6),

show dc f g (pt (pt a b c) d e), from dcpt2 h7

• ptdc7

theorem pt7_dc {a b c d e f g : Prop}

(h1 : dc f g (pt (pt a b c) d e)) :

dc f g (pt a b (pt c d e)) :=

have h2 : dc f g (pt d (pt a b c) e), from pt2_dc h1,

have h3 : dc f g (pt d e (pt a b c)), from pt3_dc h2,

have h4 : dc f g (pt (pt d e a) b c), from pt6_dc h3,

have h5 : dc f g (pt b (pt d e a) c), from pt2_dc h4,

have h6 : dc f g (pt b c (pt d e a)), from pt3_dc h5,

have h7 : dc f g (pt (pt b c d) e a), from pt6_dc h6,

have h8 : dc f g (pt e (pt b c d) a), from pt2_dc h7,

have h9 : dc f g (pt e a (pt b c d)), from pt3_dc h8,

have h10 : dc f g (pt (pt e a b) c d), from pt6_dc h9,
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have h11 : dc f g (pt c (pt e a b) d), from pt2_dc h10,

have h12 : dc f g (pt c d (pt e a b)), from pt3_dc h11,

have h13 : dc f g (pt (pt c d e) a b), from pt6_dc h12,

have h14 : dc f g (pt a (pt c d e) b), from pt2_dc h13,

show dc f g (pt a b (pt c d e)), from pt3_dc h14

• dcpt1

theorem dc1_pt {a b c d e : Prop} (h1 : pt d e a) (h2 : pt d e b) : pt d e (dc a b c) :=

have h3 : dc (pt d e a) (pt d e b) (pt d e c), from dc.dc1 h1 h2,

show pt d e (dc a b c), from dcpt4 h3

• dcpt2

theorem dc2_pt {a b c d : Prop} (h1 : pt c d (dc b a a)) : pt c d a :=

dc.dc2 (dcpt3 h1)

• dcpt3

theorem dc3_pt {a b c d: Prop} (h1 : pt c d a) : pt c d (dc b a a) :=

dcpt4 (dc.dc3 h1)

• dcpt4

theorem dc4_pt {a b c d e f g : Prop} (h1 : pt f g (dc d e (dc a b c))) :

pt f g (dc e d (dc b a c)) :=

have h2 : dc (pt f g d) (pt f g e) (pt f g (dc a b c)), from dcpt3 h1,

have h3 : dc (pt f g d) (pt f g e) (dc (pt f g a) (pt f g b) (pt f g c)), from dcpt5 h2,

have h4 : dc (pt f g e) (pt f g d) (dc (pt f g b) (pt f g a) (pt f g c)), from dc.dc4 h3,

have h5 : dc (pt f g e) (pt f g d) (pt f g (dc b a c)), from dcpt6 h4,

show pt f g (dc e d (dc b a c)), from dcpt4 h5

• dcpt5

theorem dc5_pt {a b c d e f g : Prop} (h1 : pt f g (dc d e (dc a b c))) :

pt f g (dc e d (dc a c b)) :=

have h2 : dc (pt f g d) (pt f g e) (pt f g (dc a b c)), from dcpt3 h1,

have h3 : dc (pt f g d) (pt f g e) (dc (pt f g a) (pt f g b) (pt f g c)), from dcpt5 h2,

have h4 : dc (pt f g e) (pt f g d) (dc (pt f g a) (pt f g c) (pt f g b)), from dc.dc5 h3,
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have h5 : dc (pt f g e) (pt f g d) (pt f g (dc a c b)), from dcpt6 h4,

show pt f g (dc e d (dc a c b)), from dcpt4 h5

• dcptdc5

theorem dcpt5_dc {a b c d e f g h i : Prop} (h1 : dc h i (dc f g (pt a b (dc c d e)))) :

dc h i (dc f g (dc (pt a b c) (pt a b d) (pt a b e))) :=

dc.dc7’ (dcpt5 (dc.dc6’ h1))

• dcptdc6

theorem dcpt6_dc {a b c d e f g h i : Prop}

(h1 : dc h i (dc f g (dc (pt a b c) (pt a b d) (pt a b e)))) :

dc h i (dc f g (pt a b (dc c d e))) :=

dc.dc7’ (dcpt6 (dc.dc6’ h1))

• dcpt6

theorem dc6_pt {a b c d e f g h i : Prop}

(h1 : pt h i (dc f g (dc d e (dc a b c)))) : pt h i (dc f g (dc (dc d e a) (dc d e b) c)) :=

let f’ := pt h i f, g’ := pt h i g, d’ := pt h i d, e’ := pt h i e in

have h2 : dc f’ g’ (pt h i (dc d e (dc a b c))),

from dcpt3 h1,

have h3 : dc f’ g’ (dc d’ e’ (pt h i (dc a b c))),

from dcpt5 h2,

have h4 : dc (dc f’ g’ d’) (dc f’ g’ e’) ((pt h i (dc a b c))),

from dc.dc6’ h3,

have h5 : dc (dc f’ g’ d’) (dc f’ g’ e’) (dc (pt h i a) (pt h i b) (pt h i c)),

from dcpt5 h4,

have h6 : dc f’ g’ (dc d’ e’ (dc (pt h i a) (pt h i b) (pt h i c))),

from dc.dc7’ h5,

have h7 : dc f’ g’ (dc (dc d’ e’ (pt h i a)) (dc d’ e’ (pt h i b)) (pt h i c)),

from dc.dc6 h6,

have h8 : dc g’ f’ (dc (dc d’ e’ (pt h i a)) (pt h i c) (dc d’ e’ (pt h i b))),

from dc.dc5 h7,

have h9 : dc g’ f’ (dc (dc d’ e’ (pt h i a)) (pt h i c) (pt h i (dc d e b))),

from dcpt6_dc h8,

have h10 : dc g’ f’ (dc (pt h i c) (pt h i (dc d e b)) (dc d’ e’ (pt h i a))),

from dc.dc5 (dc.dc4 h9),

have h11 : dc g’ f’ (dc (pt h i c) (pt h i (dc d e b)) (pt h i (dc d e a))),

from dcpt6_dc h10,
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have h12 : dc f’ g’ (dc (pt h i (dc d e a)) (pt h i (dc d e b)) (pt h i c)),

from dc.dc5 (dc.dc4 (dc.dc5 h11)),

have h13 : dc f’ g’ (pt h i (dc (dc d e a) (dc d e b) c)),

from dcpt6 h12,

show pt h i (dc f g (dc (dc d e a) (dc d e b) c)),

from dcpt4 h13

• dcpt7

theorem dc7_pt {a b c d e f g h i: Prop}

(h1 : pt h i (dc f g (dc (dc d e a) (dc d e b) c))) : pt h i (dc f g (dc d e (dc a b c))) :=

let f’ := pt h i f, g’ := pt h i g, d’ := pt h i d, e’ := pt h i e in

have h2 : dc f’ g’ (pt h i (dc (dc d e a) (dc d e b) c)),

from dcpt3 h1,

have h3 : dc f’ g’ (dc (pt h i (dc d e a)) (pt h i (dc d e b)) (pt h i c)),

from dcpt5 h2,

have h4 : dc g’ f’ (dc (pt h i (dc d e a)) (pt h i c) (pt h i (dc d e b))),

from dc.dc5 h3,

have h5 : dc g’ f’ (dc (pt h i (dc d e a)) (pt h i c) (dc d’ e’ (pt h i b))),

from dcpt5_dc h4,

have h6 : dc g’ f’ (dc (pt h i c) (dc d’ e’ (pt h i b)) (pt h i (dc d e a))),

from dc.dc5 (dc.dc4 h5),

have h7 : dc g’ f’ (dc (pt h i c) (dc d’ e’ (pt h i b)) (dc d’ e’ (pt h i a))),

from dcpt5_dc h6,

have h8 : dc f’ g’ (dc (dc d’ e’ (pt h i a)) (dc d’ e’ (pt h i b)) (pt h i c)),

from dc.dc5 (dc.dc4 (dc.dc5 h7)),

have h9 : dc f’ g’ (dc d’ e’ (dc (pt h i a) (pt h i b) (pt h i c))),

from dc.dc7 h8,

have h10 : dc f’ g’ (dc d’ e’ (pt h i (dc a b c))),

from dcpt6_dc h9,

have h11 : dc f’ g’ (pt h i (dc d e (dc a b c))),

from dcpt6 h10,

show pt h i (dc f g (dc d e (dc a b c))),

from dcpt4 h11

• dc′
pt
4

theorem dc4’_pt {a b c d e : Prop} (h1 : pt d e (dc a b c)) : pt d e (dc b a c) :=

have h2 : pt d e (dc (dc b a c) (dc a b c) (dc a b c)), from dc3_pt h1,

have h3 : pt d e (dc (dc a b c) (dc b a c) (dc b a c)), from dc4_pt h2,

show pt d e (dc b a c), from dc2_pt h3
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• dc′
pt
5

theorem dc5’_pt {a b c d e : Prop} (h1 : pt d e (dc a b c)) : pt d e (dc a c b) :=

have h2 : pt d e (dc (dc a c b) (dc a b c) (dc a b c)), from dc3_pt h1,

have h3 : pt d e (dc (dc a b c) (dc a c b) (dc a c b)), from dc5_pt h2,

show pt d e (dc a c b), from dc2_pt h3

• dc′
pt
6

theorem dc6’_pt {a b c d e f g : Prop}

(h1 : pt f g (dc d e (dc a b c))) : pt f g (dc (dc d e a) (dc d e b) c) :=

let h := dc d e (dc a b c), i := dc (dc d e a) (dc d e b) c in

have h2 : pt f g (dc i h h), from dc3_pt h1,

have h3 : pt f g (dc i h i), from dc6_pt h2,

have h4 : pt f g (dc h i i), from dc4’_pt h3,

show pt f g i, from dc2_pt h4

• dc′
pt
7

theorem dc7’_pt {a b c d e f g : Prop}

(h1 : pt f g (dc (dc d e a) (dc d e b) c)) : pt f g (dc d e (dc a b c)) :=

let h := dc d e (dc a b c), i := dc (dc d e a) (dc d e b) c in

have h2 : pt f g (dc h i i), from dc3_pt h1,

have h3 : pt f g (dc h i h), from dc7_pt h2,

have h4 : pt f g (dc i h h), from dc4’_pt h3,

show pt f g h, from dc2_pt h4

• dcptdc1

theorem dcpt1_dc {a b c d e f g : Prop} (h1 : dc f g (dc a b (pt c d e))) :

dc f g (pt (dc a b c) (dc a b d) (dc a b e)) :=

let a’ := dc f g a, b’ := dc f g b, d’ := dc a b d, e’ := dc a b e in

have h1 : dc a’ b’ (pt c d e),

from dc.dc6’ h1,

have h2 : pt (dc a’ b’ c) (dc a’ b’ d) (dc a’ b’ e),

from dcpt1 h1,

have h3 : pt (dc a’ b’ c) (dc a’ b’ d) (dc f g e’),

from dc7’_pt h2,

have h4 : pt (dc a’ b’ c) (dc f g e’) (dc a’ b’ d),
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from pt.pt3 h3,

have h5 : pt (dc a’ b’ c) (dc f g e’) (dc f g d’),

from dc7’_pt h4,

have h6 : pt (dc f g e’) (dc f g d’) (dc a’ b’ c),

from pt.pt3 (pt.pt2 h5),

have h7 : pt (dc f g e’) (dc f g d’) (dc f g (dc a b c)),

from dc7’_pt h6,

have h8 : pt (dc f g (dc a b c)) (dc f g d’) (dc f g e’),

from pt.pt2 (pt.pt3 (pt.pt2 h7)),

show dc f g (pt (dc a b c) d’ e’),

from dcpt2 h8

• dcptdc2

theorem dcpt2_dc {a b c d e f g : Prop} (h1 : dc f g (pt (dc a b c) (dc a b d) (dc a b e))) :

dc f g (dc a b (pt c d e)) :=

let a’ := dc f g a, b’ := dc f g b, d’ := dc a b d, e’ := dc a b e in

have h2 : pt (dc f g (dc a b c)) (dc f g d’) (dc f g e’),

from dcpt1 h1,

have h3 : pt (dc f g (dc a b c)) (dc f g d’) (dc a’ b’ e),

from dc6’_pt h2,

have h4 : pt (dc f g (dc a b c)) (dc a’ b’ e) (dc f g d’),

from pt.pt3 h3,

have h5 : pt (dc f g (dc a b c)) (dc a’ b’ e) (dc a’ b’ d),

from dc6’_pt h4,

have h6 : pt (dc a’ b’ e) (dc a’ b’ d) (dc f g (dc a b c)),

from pt.pt3 (pt.pt2 h5),

have h7 : pt (dc a’ b’ e) (dc a’ b’ d) (dc a’ b’ c),

from dc6’_pt h6,

have h8 : pt (dc a’ b’ c) (dc a’ b’ d) (dc a’ b’ e),

from pt.pt2 (pt.pt3 (pt.pt2 h7)),

have h9 : dc a’ b’ (pt c d e),

from dcpt2 h8,

show dc f g (dc a b (pt c d e)),

from dc.dc7’ h9

• dcptdc3

theorem dcpt3_dc {a b c d e f g : Prop} (h1 : dc f g (pt a b (dc c d e))) :

dc f g (dc (pt a b c) (pt a b d) (pt a b e)) := dcpt5 h1
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• dcptdc4

theorem dcpt4_dc {a b c d e f g : Prop} (h1 : dc f g (dc (pt a b c) (pt a b d) (pt a b e))) :

dc f g (pt a b (dc c d e)) := dcpt6 h1

• dcptdc7

theorem dcpt7_dc {a b c d e f g h i : Prop} (h1 : dc h i (pt f g (dc a b (pt c d e)))) :

dc h i (pt f g (pt (dc a b c) (dc a b d) (dc a b e))) :=

let f’ := dc h i f, g’ := dc h i g, a’ := dc h i a, b’ := dc h i b in

have h2 : pt f’ g’ (dc h i (dc a b (pt c d e))),

from dcpt1 h1,

have h3 : pt f’ g’ (dc a’ b’ (pt c d e)),

from dc6’_pt h2,

have h4 : pt f’ g’ (pt (dc a’ b’ c) (dc a’ b’ d) (dc a’ b’ e)),

from dcpt7 h3,

have h5 : pt (pt f’ g’ (dc a’ b’ c)) (dc a’ b’ d) (dc a’ b’ e),

from pt.pt6 h4,

have h6 : pt (pt f’ g’ (dc a’ b’ c)) (dc a’ b’ d) (dc h i (dc a b e)),

from dc7’_pt h5,

have h7 : pt (pt f’ g’ (dc a’ b’ c)) (dc h i (dc a b e)) (dc a’ b’ d),

from pt.pt3 h6,

have h8 : pt (pt f’ g’ (dc a’ b’ c)) (dc h i (dc a b e)) (dc h i (dc a b d)),

from dc7’_pt h7,

have h9 : pt f’ g’ (pt (dc a’ b’ c) (dc h i (dc a b e)) (dc h i (dc a b d))),

from pt.pt7 h8,

have h10 : pt f’ g’ (pt (dc h i (dc a b e)) (dc h i (dc a b d)) (dc a’ b’ c)),

from pt.pt3_ast (pt.pt2_ast h9),

have h11 : pt (pt f’ g’ (dc h i (dc a b e))) (dc h i (dc a b d)) (dc a’ b’ c),

from pt.pt6 h10,

have h12 : pt (pt f’ g’ (dc h i (dc a b e))) (dc h i (dc a b d)) (dc h i (dc a b c)),

from dc7’_pt h11,

have h13 : pt f’ g’ (pt (dc h i (dc a b e)) (dc h i (dc a b d)) (dc h i (dc a b c))),

from pt.pt7 h12,

have h14 : pt f’ g’ (pt (dc h i (dc a b c)) (dc h i (dc a b d)) (dc h i (dc a b e))),

from pt.pt2_ast (pt.pt3_ast (pt.pt2_ast h13)),

have h15 : pt f’ g’ (dc h i (pt (dc a b c) (dc a b d) (dc a b e))),

from dcpt8 h14,

show dc h i (pt f g (pt (dc a b c) (dc a b d) (dc a b e))),

from dcpt2 h15

• dcptdc8
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theorem dcpt8_dc {a b c d e f g h i : Prop}

(h1 : dc h i (pt f g (pt (dc a b c) (dc a b d) (dc a b e)))) :

dc h i (pt f g (dc a b (pt c d e))) :=

let f’ := dc h i f, g’ := dc h i g, a’ := dc h i a, b’ := dc h i b in

have h2 : pt f’ g’ (dc h i (pt (dc a b c) (dc a b d) (dc a b e))),

from dcpt1 h1,

have h3 : pt f’ g’ (pt (dc h i (dc a b c)) (dc h i (dc a b d)) (dc h i (dc a b e))),

from dcpt7 h2,

have h4 : pt (pt f’ g’ (dc h i (dc a b c))) (dc h i (dc a b d)) (dc h i (dc a b e)),

from pt.pt6 h3,

have h5 : pt (pt f’ g’ (dc h i (dc a b c))) (dc h i (dc a b d)) (dc a’ b’ e),

from dc6’_pt h4,

have h6 : pt (pt f’ g’ (dc h i (dc a b c))) (dc a’ b’ e) (dc h i (dc a b d)),

from pt.pt3 h5,

have h7 : pt (pt f’ g’ (dc h i (dc a b c))) (dc a’ b’ e) (dc a’ b’ d),

from dc6’_pt h6,

have h8 : pt f’ g’ (pt (dc h i (dc a b c)) (dc a’ b’ e) (dc a’ b’ d)),

from pt.pt7 h7,

have h9 : pt f’ g’ (pt (dc a’ b’ e) (dc a’ b’ d) (dc h i (dc a b c))),

from pt.pt3_pt (pt.pt2_pt h8),

have h10 : pt (pt f’ g’ (dc a’ b’ e)) (dc a’ b’ d) (dc h i (dc a b c)),

from pt.pt6 h9,

have h11 : pt (pt f’ g’ (dc a’ b’ e)) (dc a’ b’ d) (dc a’ b’ c),

from dc6’_pt h10,

have h12 : pt f’ g’ (pt (dc a’ b’ e) (dc a’ b’ d) (dc a’ b’ c)),

from pt.pt7 h11,

have h13 : pt f’ g’ (pt (dc a’ b’ c) (dc a’ b’ d) (dc a’ b’ e)),

from pt.pt2_pt (pt.pt3_pt (pt.pt2_pt h12)),

have h14 : pt f’ g’ (dc a’ b’ (pt c d e)),

from dcpt8 h13,

have h15 : pt f’ g’ (dc h i (dc a b (pt c d e))),

from dc7’_pt h14,

show dc h i (pt f g (dc a b (pt c d e))),

from dcpt2 h15

• dcptpt1

theorem dcpt1_pt {a b c d e f g : Prop} (h1 : pt f g (dc a b (pt c d e))) :

pt f g (pt (dc a b c) (dc a b d) (dc a b e)) := dcpt7 h1
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• dcptpt2

theorem dcpt2_pt {a b c d e f g : Prop} (h1 : pt f g (pt (dc a b c) (dc a b d) (dc a b e))) :

pt f g (dc a b (pt c d e)) := dcpt8 h1

• dcptpt3

theorem dcpt3_pt {a b c d e f g : Prop}

(h1 : pt f g (pt a b (dc c d e))) :

pt f g (dc (pt a b c) (pt a b d) (pt a b e)) :=

let a’ := pt f g a, c’ := pt a b c, d’ := pt a b d, e’ := pt a b e in

have h2 : pt a’ b (dc c d e), from pt.pt6 h1,

have h3 : dc (pt a’ b c) (pt a’ b d) (pt a’ b e), from dcpt3 h2,

have h4 : dc (pt a’ b c) (pt a’ b d) (pt f g e’), from pt7_dc h3,

have h5 : dc (pt a’ b c) (pt f g e’) (pt a’ b d), from dc.dc5’ h4,

have h6 : dc (pt a’ b c) (pt f g e’) (pt f g d’), from pt7_dc h5,

have h7 : dc (pt f g e’) (pt f g d’) (pt a’ b c), from dc.dc5’ (dc.dc4’ h6),

have h8 : dc (pt f g e’) (pt f g d’) (pt f g c’), from pt7_dc h7,

have h9 : dc (pt f g c’) (pt f g d’) (pt f g e’), from dc.dc4’ (dc.dc5’ (dc.dc4’ h8)),

show pt f g (dc c’ d’ e’), from dcpt4 h9

• dcptpt4

theorem dcpt4_pt {a b c d e f g : Prop} (h1 : pt f g (dc (pt a b c) (pt a b d) (pt a b e))) :

pt f g (pt a b (dc c d e)) :=

let a’ := pt f g a, c’ := pt a b c, d’ := pt a b d, e’ := pt a b e in

have h2 : dc (pt f g c’) (pt f g (pt a b d)) (pt f g e’), from dcpt3 h1,

have h3 : dc (pt f g c’) (pt f g (pt a b d)) (pt a’ b e), from pt6_dc h2,

have h4 : dc (pt f g c’) (pt a’ b e) (pt f g (pt a b d)), from dc.dc5’ h3,

have h5 : dc (pt f g c’) (pt a’ b e) (pt a’ b d), from pt6_dc h4,

have h6 : dc (pt a’ b e) (pt a’ b d) (pt f g c’), from dc.dc5’ (dc.dc4’ h5),

have h7 : dc (pt a’ b e) (pt a’ b d) (pt a’ b c), from pt6_dc h6,

have h8 : dc (pt a’ b c) (pt a’ b d) (pt a’ b e), from dc.dc4’ (dc.dc5’ (dc.dc4’ h7)),

have h9 : pt a’ b (dc c d e), from dcpt4 h8,

show pt f g (pt a b (dc c d e)), from pt.pt7 h9

• dcptpt5

theorem dcpt5_pt {a b c d e f g h i : Prop} (h1 : pt h i (dc f g (pt a b (dc c d e)))) :

pt h i (dc f g (dc (pt a b c) (pt a b d) (pt a b e))) :=

let f’ := pt h i f, g’ := pt h i g, a’ := pt h i a, d’ := pt a b d, e’ := pt a b e in
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have h2 : dc f’ g’ (pt h i (pt a b (dc c d e))),

from dcpt3 h1,

have h3 : dc f’ g’ (pt a’ b (dc c d e)),

from pt6_dc h2,

have h4 : dc f’ g’ (dc (pt a’ b c) (pt a’ b d) (pt a’ b e)),

from dcpt5 h3,

have h5 : dc (dc f’ g’ (pt a’ b c)) (dc f’ g’ (pt a’ b d)) (pt a’ b e),

from dc.dc6’ h4,

have h6 : dc (dc f’ g’ (pt a’ b c)) (dc f’ g’ (pt a’ b d)) (pt h i e’),

from pt7_dc h5,

have h7 : dc f’ g’ (dc (pt a’ b c) (pt a’ b d) (pt h i e’)),

from dc.dc7’ h6,

have h8 : dc g’ f’ (dc (pt a’ b c) (pt h i e’) (pt a’ b d)),

from dc.dc5 h7,

have h9 : dc (dc g’ f’ (pt a’ b c)) (dc g’ f’ (pt h i e’)) (pt a’ b d),

from dc.dc6’ h8,

have h10 : dc (dc g’ f’ (pt a’ b c)) (dc g’ f’ (pt h i e’)) (pt h i d’),

from pt7_dc h9,

have h11 : dc g’ f’ (dc (pt a’ b c) (pt h i e’) (pt h i d’)),

from dc.dc7’ h10,

have h12 : dc g’ f’ (dc (pt h i e’) (pt h i d’) (pt a’ b c)),

from dc.dc5 (dc.dc4 h11),

have h13 : dc (dc g’ f’ (pt h i e’)) (dc g’ f’ (pt h i d’)) (pt a’ b c),

from dc.dc6’ h12,

have h14 : dc (dc g’ f’ (pt h i e’)) (dc g’ f’ (pt h i d’)) (pt h i (pt a b c)),

from pt7_dc h13,

have h15 : dc g’ f’ (dc (pt h i e’) (pt h i d’) (pt h i (pt a b c))),

from dc.dc7’ h14,

have h16 : dc f’ g’ (dc (pt h i (pt a b c)) (pt h i d’) (pt h i e’)),

from dc.dc4 (dc.dc5 (dc.dc4 h15)),

have h17 : dc f’ g’ (pt h i (dc (pt a b c) d’ e’)),

from dcpt6 h16,

show pt h i (dc f g (dc (pt a b c) d’ e’)),

from dcpt4 h17

• dcptpt6

theorem dcpt6_pt {a b c d e f g h i : Prop}

(h1 : pt h i (dc f g (dc (pt a b c) (pt a b d) (pt a b e)))) :

pt h i (dc f g (pt a b (dc c d e))) :=

let f’ := pt h i f, g’ := pt h i g, a’ := pt h i a, d’ := pt a b d, e’ := pt a b e in

have h2 : dc f’ g’ (pt h i (dc (pt a b c) d’ e’)),
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from dcpt3 h1,

have h3 : dc f’ g’ (dc (pt h i (pt a b c)) (pt h i d’) (pt h i e’)),

from dcpt5 h2,

have h4 : dc g’ f’ (dc (pt h i e’) (pt h i d’) (pt h i (pt a b c))),

from dc.dc4 (dc.dc5 (dc.dc4 h3)),

have h5 : dc (dc g’ f’ (pt h i e’)) (dc g’ f’ (pt h i d’)) (pt h i (pt a b c)),

from dc.dc6’ h4,

have h6 : dc (dc g’ f’ (pt h i e’)) (dc g’ f’ (pt h i d’)) (pt a’ b c),

from pt6_dc h5,

have h7 : dc g’ f’ (dc (pt h i e’) (pt h i d’) (pt a’ b c)),

from dc.dc7’ h6,

have h8 : dc g’ f’ (dc (pt a’ b c) (pt h i e’) (pt h i d’)),

from dc.dc4 (dc.dc5 h7),

have h9 : dc (dc g’ f’ (pt a’ b c)) (dc g’ f’ (pt h i e’)) (pt h i d’),

from dc.dc6’ h8,

have h10 : dc (dc g’ f’ (pt a’ b c)) (dc g’ f’ (pt h i e’)) (pt a’ b d),

from pt6_dc h9,

have h11 : dc g’ f’ (dc (pt a’ b c) (pt h i e’) (pt a’ b d)),

from dc.dc7’ h10,

have h12 : dc f’ g’ (dc (pt a’ b c) (pt a’ b d) (pt h i e’)),

from dc.dc5 h11,

have h13 : dc (dc f’ g’ (pt a’ b c)) (dc f’ g’ (pt a’ b d)) (pt h i e’),

from dc.dc6’ h12,

have h14 : dc (dc f’ g’ (pt a’ b c)) (dc f’ g’ (pt a’ b d)) (pt a’ b e),

from pt6_dc h13,

have h15 : dc f’ g’ (dc (pt a’ b c) (pt a’ b d) (pt a’ b e)),

from dc.dc7’ h14,

have h16 : dc f’ g’ (pt a’ b (dc c d e)),

from dcpt6 h15,

have h17 : dc f’ g’ (pt h i (pt a b (dc c d e))),

from pt7_dc h16,

show pt h i (dc f g (pt a b (dc c d e))),

from dcpt4 h17

• dcptpt7

theorem dcpt7_pt {a b c d e f g h i : Prop} (h1 : pt h i (pt f g (dc a b (pt c d e)))) :

pt h i (pt f g (pt (dc a b c) (dc a b d) (dc a b e))) :=

have h2 : pt (pt h i f) g (dc a b (pt c d e)), from pt.pt6 h1,

have h3 : pt (pt h i f) g (pt (dc a b c) (dc a b d) (dc a b e)), from dcpt7 h2,

show pt h i (pt f g (pt (dc a b c) (dc a b d) (dc a b e))), from pt.pt7 h3
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• dcptpt8

theorem dcpt8_pt {a b c d e f g h i : Prop}

(h1 : pt h i (pt f g (pt (dc a b c) (dc a b d) (dc a b e)))) :

pt h i (pt f g (dc a b (pt c d e))) :=

have h2 : pt (pt h i f) g (pt (dc a b c) (dc a b d) (dc a b e)), from pt.pt6 h1,

have h3 : pt (pt h i f) g (dc a b (pt c d e)), from dcpt8 h2,

show pt h i (pt f g (dc a b (pt c d e))), from pt.pt7 h3

Theorem 4.12.3. The calculus Bpt,dc is complete with respect to the matrix 2pt,dc.

Proof. Notice that rules dcptj , ptpti , and dcptptk , where 1 ≤ i ≤ 6, 1 ≤ j ≤ 7 and 1 ≤ k ≤ 8,

are all provable in Bdc,pt, by Lemma 4.9.2 and Lemma 4.12.2. This fact implies that the

property mpt, and thus the completeness property (pt), hold in Bpt,dc, by Remark 4.9.1.

A similar argument justifies the preservation of the completeness property (dc), in view

of Remark 4.11.1: use the fact that rules ptdci , dcdcj , and dcptdck , where 1 ≤ i ≤ 6, 1 ≤ j ≤ 7

and 1 ≤ k ≤ 8, are all provable in Bpt,dc, by Lemma 4.11.2 and Lemma 4.12.2.

4.13 Bdc,¬

We present now a calculus for the fragment containing in its signature only dc and

¬. The purpose is to extend Bdc with only two interaction rules, which are proved sound

with respect to 2dc,¬ right after the presentation of Bdc,¬ below.

Hilbert Calculus 31. Bdc,¬

Bdc

dc(C,D, dc(B,A,¬A))

dc(C,D,B)
dcn1

dc(C,D,B)

dc(C,D, dc(B,A,¬A))
dcn2

Theorem 4.13.1. The calculus Bdc,¬ is sound with respect to the matrix 2dc,¬.

Proof. Let v be an arbitrary 2dc,¬-valuation. The soundness result for the rules of Bdc was

already proved in Theorem 4.11.1. For dcn1, suppose that v assigns 0 to its conclusion.

Then we have the following possibilities:
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• v(C) = 1, v(D) = 0 and v(B) = 0: since v(B) = 0, v(dc(B,A,¬A)) = 0, no matter

the value of v(A), then v(dc(C,D, dc(B,A,¬A))) = 0.

• v(C) = 0, v(D) = 1 and v(B) = 0: analogous to the previous case.

• v(C) = 0, v(D) = 0 and v(B) = 1: since v(B) = 1, v(dc(B,A,¬A)) = 1, no matter

the value of v(A), then v(dc(C,D, dc(B,A,¬A))) = 0, because v(C) = v(D) = 0.

• v(C) = 0, v(D) = 0 and v(B) = 0: analogous to the previous case.

The proof for dcn2 is similar by considering the cases in which dc(C,D,B) is evaluated to

1.

We proceed now to derive some rules in Bdc,¬ that will be used in the completeness

proof of this calculus with respect to 2dc,¬.

Lemma 4.13.2. The following rules are derivable in Bdc,¬:

dc(E,F, dc(C,D, dc(B,A,¬A)))

dc(E,F, dc(C,D,B))
dcndc

1

dc(E,F, dc(C,D,B))

dc(E,F, dc(C,D, dc(B,A,¬A)))
dcndc

2

A ¬A
B

n1

B
dc(B,A,¬A)

dcn3

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• dcndc
1

theorem dcn1_dc {a b c d e f : Prop} (h1 : dc e f (dc c d (dc b a (neg a))))

: dc e f (dc c d b) :=

have h2 : dc (dc e f c) (dc e f d) (dc b a (neg a)), from dc.dc6’ h1,

have h3 : dc (dc e f c) (dc e f d) b, from dcn1 h2,

show dc e f (dc c d b), from dc.dc7’ h3

• dcndc
2
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theorem dcn2_dc {a b c d e f : Prop} (h1 : dc e f (dc c d b))

: dc e f (dc c d (dc b a (neg a))) :=

have h2 : dc (dc e f c) (dc e f d) b, from dc.dc6’ h1,

have h3 : dc (dc e f c) (dc e f d) (dc b a (neg a)), from dcn2 h2,

show dc e f (dc c d (dc b a (neg a))), from dc.dc7’ h3

• n1

theorem n1 {a b : Prop} (h1 : a) (h2 : neg a) : b :=

have h2 : dc a (neg a) b, from dc.dc1 h1 h2,

have h3 : dc (dc a (neg a) b) a b, from dc.dc1 h2 h1,

have h4 : dc a b (dc a (neg a) b), from dc.dc5’ (dc.dc4’ h3),

have h5 : dc a b (dc b a (neg a)), from dc.dc4 (dc.dc5 h4),

have h6 : dc a b b, from dcn1 h5,

show b, from dc.dc2 h6

• dcn3

theorem dcn3 {a b : Prop} (h1 : b) : dc b a (neg a) :=

have h2 : dc a b b, from dc.dc3 h1,

have h3 : dc a b (dc b a (neg a)), from dcn2 h2,

have h4 : dc (dc a b b) (dc a b a) (neg a), from dc.dc6’ h3,

have h5 : dc (neg a) (dc a b b) (dc a b a), from dc.dc4’ (dc.dc5’ h4),

have h6 : dc (neg a) (dc a b b) (dc b a a), from dc.dc5 (dc.dc4 h5),

have h7 : dc (neg a) (dc a b b) a, from dc.dc2_dc h6,

have h8 : dc (neg a) a (dc a b b), from dc.dc5’ h7,

have h9 : dc (neg a) a b, from dc.dc2_dc h8,

show dc b a (neg a), from dc.dc5’ (dc.dc4’ (dc.dc5’ h9))

Theorem 4.13.3. The calculus Bdc,¬ is complete with respect to the matrix 2dc,¬.

Proof. According to the procedure given in Section 2.7, we need to prove the complete-

ness properties (¬) and (dc). Notice that the properties mdc and δdc hold in this calculus,

because the dc-lifted versions of the rules dcn1 and dcn2 are derivable Bdc,¬ (see Re-

mark 4.11.1); therefore, (dc) also holds in Bdc,¬ (check the proof of Theorem 4.11.5). In or-

der to finish this proof, the completeness property for ¬, namely (¬) ¬A ∈ Γ+ iff A 6∈ Γ+,
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must be proved. The left-to-right direction is proved in the same way as in the proof of

completeness of the calculus B¬, since n1 is derivable in Bdc,¬. From the right to the

left, the proof goes by contradiction: suppose that A,¬A 6∈ Γ+, so (a): Γ+,A `Bdc,¬ Z

and (b): Γ+,¬A `Bdc,¬ Z. Because 2dc,¬ has no tautologies, Lemma 2.6.2 guarantees that

Γ+ is nonempty, so we can take some B ∈ Γ+. Then, by δdc, from (a) and (b), we have

(c): Γ+, dc(B,A,¬A) `Bdc,¬ Z. We also have, by rule dcn3, (d): B `Bdc,¬ dc(B,A,¬A).

So, by (T), from (c) and (d), we get Γ+,B `Bdc,¬ Z, but B ∈ Γ+, thus Γ+ `Bdc,¬ Z, a

contradiction.

4.14 B∧,∨, B∧,∨,>, B∧,∨,⊥, B∧,∨,⊥,>

The calculus B∧,∨ for the fragment B∧,∨, presented below, is produced by adding

to the calculus B∨ some rules of interaction that will guarantee the preservation of the

properties (∧) and (∨), necessary for completeness.

Hilbert Calculus 32. B∧,∨

B∨

C ∨ A C ∨ B
C ∨ (A ∧ B)

cd1
C ∨ (A ∧ B)

C ∨ A
cd2

C ∨ (A ∧ B)

C ∨ B
cd3

Theorem 4.14.1. The calculus B∧,∨ is sound with respect to the matrix 2∧,∨.

Proof. Only soundness of cdi, where 1 ≤ i ≤ 3, remains to be proved. Let v be a 2∧,∨-

evaluation. Notice that, if v(C) = 1, premisses and conclusions of these rules will be

necessarily evaluated to 1. In case v(C) = 0, the argument is analogous to the one used

in the proof of soundness for B∧ (see Theorem 4.2.1).

Lemma 4.14.2. The rules of B∧ are derivable in B∧,∨.

Proof. The formally verified derivation of each rule is presented below, following what

was explained in Chapter 3.

• c1

theorem c1 {a b : Prop} (h1 : a) (h2 : b) : and a b :=

have h3 : or (and a b) a, from or.d1’ h1,

have h4 : or (and a b) b, from or.d1’ h2,

have h5 : or (and a b) (and a b), from cd1 h3 h4,
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show and a b, from or.d2 h5

• c2

theorem c2 {a b : Prop} (h1 : and a b) : a :=

have h2 : or a (and a b), from or.d1’ h1,

have h3 : or a a, from cd2 h2,

show a, from or.d2 h3

• c3

theorem c3 {a b : Prop} (h1 : and a b) : b :=

have h2 : or b (and a b), from or.d1’ h1,

have h3 : or b b, from cd3 h2,

show b, from or.d2 h3

Theorem 4.14.3. The calculus B∧,∨ is complete with respect to the matrix 2∧,∨.

Proof. Since the rules of B∧ are derivable in this calculus, as presented in Lemma 4.14.2,

the completeness property (∧) holds in B∧,∨. In addition, because cdi = c∨i , for all

1 ≤ i ≤ 3, cd∨i
,2 is derivable in the proposed calculus by Lemma 4.5.7, so the completeness

property (∨) also follows (check the proof of Theorem 4.5.6 for more details).

Remark 4.14.1. The calculus B∧,∨ would have been produced by the procedure implicit

in the proof of Theorem 4.5.12 regarding the axiomatizability of monotonic expansions of

B∨.

The expansion B∧,∨,> is directly axiomatized by the calculus below, in view of Corol-

lary 2.8.4.1:

Hilbert Calculus 33. B∧,∨,>

B∧,∨ B>
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The fragment B∧,∨,⊥ is axiomatized by adding to the rules of B∧,∨ the rule db1 (as in

B∨,⊥), because the completeness property (∧) is not affected by such modification (see

Remark 4.2.1) and B∨,⊥ is complete with respect to B∨,⊥, as proved in Theorem 4.5.10.

Hilbert Calculus 34. B∧,∨,⊥

B∧,∨
A ∨ ⊥

A
db1

Finally, the axiomatization of B∧,∨,⊥,> is another application of Corollary 2.8.4.1:

Hilbert Calculus 35. B∧,∨,⊥,>

B∧,∨,⊥ B>

4.15 Bki,∨, Bki,∨,⊥, Bki,∨,>

The present fragments are at the top of Post’s lattice and are expansions of Bki. We

will produce first an axiomatization for Bki,∨ as a direct application of Theorem 4.4.9,

which provides a procedure to axiomatize any expansion of Bki by adding some at most

unary rules to Bki.

Hilbert Calculus 36. Bki,∨

Bki

ki(D,E,A ∨ B)

ki(D,E, ki(A ∨ B, ki(A ∨ B,A,C), ki(A ∨ B, ki(A ∨ B,B,C),C)))
kid1

ki(D,E,A)

ki(D,E,A ∨ B)
kid2

ki(D,E,B)

ki(D,E,A ∨ B)
kid3

Next, in order to axiomatize Bki,∨,⊥, we use again Theorem 4.4.9. The procedure now

gives the calculus Bki,∨ plus a rule of interaction to accomodate ⊥.

Hilbert Calculus 37. Bki,∨,⊥
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Bki,∨

ki(A,B,⊥)

ki(A,B,C)
kidb1

Finally, we use Corollary 2.8.4.1 to axiomatize Bki,∨,>.

Hilbert Calculus 38. Bki,∨,>

Bki,∨ B>



138

5 Final remarks

This work supplies the need for a more rigorous, accessible and verified presentation of

the proof of the axiomatizability of the fragments of Classical Logic induced by the clones

located at the finite section of Post’s lattice, which was originally given by Wolfgang

Rautenberg in a paper with many typographic errors, with difficult notation and with

many details missing. With the present study, it is expected that most doubts caused

by such presentation problems regarding the veracity of this result disappear. This is a

contribution that aids in the understanding of and provides more confidence to studies that

apply this result somehow, with emphasis on those in the field of combination of logics,

for which the properties of Hilbert-style proof systems are of special interest. Finally, the

present study is a source of examples and a guide for the application of the Lindenbaum-

Asser extension to proving the completeness of a Hilbert calculus with respect to a logical

matrix, as well as for the verification, using the Lean theorem prover, of the derivability

of rules in the calculus.

Further studies on the topic of the axiomatizability of fragments of Classical Logic

are the verification of the completeness proof for the calculus Bpt,⊥, or the proposal of

another axiomatization for 2pt,⊥; the search for simpler and more user-friendly calculi

adequate for some fragments, like Bad (twenty-five rules in Bad) and Bpt,dc (twenty-one

rules in Bpt,dc, some of them pretty complex); an analysis of the axiomatizability of the

fragments of first-order Classical Logic; the investigation of the rules of interaction needed

to produce an adequate calculus from the merging of two other arbitrary calculi, aiming

to implement an optimized procedure that delivers axiomatizations for the fragment of

Classical Logic corresponding to the combined language; and the search for a method with

the purpose of, given a 2-matrix 2Σ whose signature is not previously known, producing

an axiomatization over the same signature Σ for such matrix, a generalization of the

procedure implemented in [7] based on Rautenberg’s work.
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